Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Geroscience ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787463

ABSTRACT

Dietary restriction (DR) and hypoxia (low oxygen) extend lifespan in Caenorhabditis elegans through the induction of a convergent downstream longevity gene, fmo-2. Flavin-containing monooxygenases (FMOs) are highly conserved xenobiotic-metabolizing enzymes with a clear role in promoting longevity in nematodes and a plausible similar role in mammals. This makes them an attractive potential target of small molecule drugs to stimulate the health-promoting effects of longevity pathways. Here, we utilize an fmo-2 fluorescent transcriptional reporter in C. elegans to screen a set of 80 compounds previously shown to improve stress resistance in mouse fibroblasts. Our data show that 19 compounds significantly induce fmo-2, and 10 of the compounds induce fmo-2 more than twofold. Interestingly, 9 of the 10 high fmo-2 inducers also extend lifespan in C. elegans. Two of these drugs, mitochondrial respiration chain complex inhibitors, interact with the hypoxia pathway to induce fmo-2, whereas two dopamine receptor type 2 (DRD2) antagonists interact with the DR pathway to induce fmo-2, indicating that dopamine signaling is involved in DR-mediated fmo-2 induction. Together, our data identify nine drugs that each (1) increase stress resistance in mouse fibroblasts, (2) induce fmo-2 in C. elegans, and (3) extend nematode lifespan, some through known longevity pathways. These results define fmo-2 induction as a viable approach to identifying and understanding mechanisms of putative longevity compounds.

2.
bioRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38260451

ABSTRACT

Cellular stress is a fundamental component of age-associated disease. Cells encounter various forms of stress - oxidative stress, protein misfolding, DNA damage, etc. - and respond by activating specific, well-defined stress response pathways. As we age, the burden of stress and resulting damage increases while our cells' ability to deal with the consequences becomes diminished due to dysregulation of cellular stress response pathways. Many interventions that extend lifespan activate one or more stress response pathways or allow cells to maintain normal stress response later in life. The nematode Caenorhabditis elegans is a commonly used model for both aging and stress response research. As such, stress response experiments are regularly conducted as part of studies focused on mechanisms of aging in C. elegans. However, experimental design across experiments in the field are highly variable, including stressor dose, age at exposure, culture type (liquid vs. solid), bacterial strain used as a food source, and environmental temperature. These differences can result in different experimental outcomes, making comparison of results between studies challenging. Here we evaluate several experimental variables that are variable in the published literature and find that each can meaningfully alter experimental outcomes for multiple stressors. Our goal is to raise awareness of the issue of experimental variability within the field and suggest a standardized experimental design to serve as a set of guidelines for future experiments. By adopting these guidelines as a starting point, and explicitly noting differences in specific experiments, we aim to promote rigor and reproducibility, ultimately fostering more interpretable and translatable outcomes in geroscience research.

3.
Nat Commun ; 14(1): 8338, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097593

ABSTRACT

Tryptophan metabolism through the kynurenine pathway influences molecular processes critical to healthy aging including immune signaling, redox homeostasis, and energy production. Aberrant kynurenine metabolism occurs during normal aging and is implicated in many age-associated pathologies including chronic inflammation, atherosclerosis, neurodegeneration, and cancer. We and others previously identified three kynurenine pathway genes-tdo-2, kynu-1, and acsd-1-for which decreasing expression extends lifespan in invertebrates. Here we report that knockdown of haao-1, a fourth gene encoding the enzyme 3-hydroxyanthranilic acid (3HAA) dioxygenase (HAAO), extends lifespan by ~30% and delays age-associated health decline in Caenorhabditis elegans. Lifespan extension is mediated by increased physiological levels of the HAAO substrate 3HAA. 3HAA increases oxidative stress resistance and activates the Nrf2/SKN-1 oxidative stress response. In pilot studies, female Haao knockout mice or aging wild type male mice fed 3HAA supplemented diet were also long-lived. HAAO and 3HAA represent potential therapeutic targets for aging and age-associated disease.


Subject(s)
Caenorhabditis elegans Proteins , Kynurenine , Animals , Male , Female , Mice , Kynurenine/metabolism , Tryptophan/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , 3-Hydroxyanthranilic Acid/metabolism , Longevity/genetics , Mice, Knockout , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism
4.
J Vis Exp ; (190)2022 12 09.
Article in English | MEDLINE | ID: mdl-36571410

ABSTRACT

The nematode Caenorhabditis elegans is among the most common model systems used in aging research owing to its simple and inexpensive culture techniques, rapid reproduction cycle (~3 days), short lifespan (~3 weeks), and numerous available tools for genetic manipulation and molecular analysis. The most common approach for conducting aging studies in C. elegans, including survival analysis, involves culturing populations of tens to hundreds of animals together on solid nematode growth media (NGM) in Petri plates. While this approach gathers data on a population of animals, most protocols do not track individual animals over time. Presented here is an optimized protocol for the long-term culturing of individual animals on microfabricated polydimethylsiloxane (PDMS) devices called WorMotels. Each device allows up to 240 animals to be cultured in small wells containing NGM, with each well isolated by a copper sulfate-containing moat that prevents the animals from fleeing. Building on the original WorMotel description, this paper provides a detailed protocol for molding, preparing, and populating each device, with descriptions of common technical complications and advice for troubleshooting. Within this protocol are techniques for the consistent loading of small-volume NGM, the consistent drying of both the NGM and bacterial food, options for delivering pharmacological interventions, instructions for and practical limitations to reusing PDMS devices, and tips for minimizing desiccation, even in low-humidity environments. This technique allows the longitudinal monitoring of various physiological parameters, including stimulated activity, unstimulated activity, body size, movement geometry, healthspan, and survival, in an environment similar to the standard technique for group culture on solid media in Petri plates. This method is compatible with high-throughput data collection when used in conjunction with automated microscopy and analysis software. Finally, the limitations of this technique are discussed, as well as a comparison of this approach to a recently developed method that uses microtrays to culture isolated nematodes on solid media.


Subject(s)
Aging , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Aging/physiology , Longevity , Culture Media , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...