Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Bioresour Technol ; 245(Pt A): 274-282, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28892702

ABSTRACT

The production of wax esters using microbial oils was demonstrated in this study. Microbial oils produced from food waste and by-product streams by three oleaginous yeasts were converted into wax esters via enzymatic catalysis. Palm oil was initially used to evaluate the influence of temperature and enzyme activity on wax ester synthesis catalysed by Novozyme 435 and Lipozyme lipases using cetyl, oleyl and behenyl alcohols. The highest conversion yields (up to 79.6%) were achieved using 4U/g of Novozyme 435 at 70°C. Transesterification of microbial oils to behenyl and cetyl esters was achieved at conversion yields up to 87.3% and 69.1%, respectively. Novozyme 435 was efficiently reused for six and three cycles during palm esters and microbial esters synthesis, respectively. The physicochemical properties of microbial oil derived behenyl esters were comparable to natural waxes. Wax esters from microbial oils have potential applications in cosmetics, chemical and food industries.


Subject(s)
Esters , Food Industry , Industrial Waste , Esterification , Lipase , Plant Oils , Waxes
3.
Eng Life Sci ; 17(3): 262-281, 2017 Mar.
Article in English | MEDLINE | ID: mdl-32624773

ABSTRACT

Oleochemical activities (e.g. biodiesel production, fat saponification) generate annually very high amounts of concentrated glycerol-containing waters (called crude glycerol) as the principal residues of these processes. Crude glycerol is an industrial residue the valorization of which attracts remarkable and constantly increasing interest. In the current investigation, biodiesel-derived glycerol was employed as substrate for yeast and fungal strains cultivated under nitrogen-limited conditions in shake flasks. Glucose was employed as reference substrate. Several yeasts (Candida diddensiae, Candida tropicalis, Pichia ciferrii, Williopsis saturnus, Candida boidinii, and Candida oleophila) rapidly assimilated glucose and converted it into ethanol, despite aerobic conditions imposed, and were Crabtree-positive. None of these yeasts produced ethanol during growth on glycerol or accumulated significant quantities of lipid during growth on glucose or glycerol. Only Rhodosporidium toruloides produced notable lipid quantities from glucose and to lesser extent from glycerol. Yarrowia lipolytica LFMB 20 produced citrate ≈58 g/L growing on high-glucose media, while on high-glycerol media ≈42 g/L citrate and ≈18 g/L mannitol. During growth on glucose/glycerol blends, glycerol was assimilated first and thereafter glucose was consumed. Fungi produced higher lipid quantities compared with yeasts. High lipid quantities were produced by Mortierella ramanniana, Mucor sp., and mainly Mortierella isabellina, with glycerol being more adequate for M. ramanniana and glucose for Mucor sp. and M. isabellina. M. isabellina ATHUM 2935 produced lipids of 8.5 g/L, 83.3% w/w in dry cell weight (DCW) and conversion yield per unit of glucose consumed ≈0.25 g/g. The respective values on glycerol were 5.4 g/L, 66.6% w/w in DCW and ≈0.22 g/g. Lipids of all microorganisms were analyzed with regards to their fatty acid composition, and M. isabellina presented the closest similitude with rapeseed oil. Crude lipids produced by this fungus and extracted with chloroform/methanol blend, were composed mostly of triacylglycerols, thus indicating that these solvents are adequate for triacylglycerol extraction.

4.
Int J Food Microbiol ; 220: 6-18, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26773252

ABSTRACT

Aqueous extract of Origanum vulgare (oregano), sodium hypochlorite (60 and 300 ppm of free chlorine), Citrox® (containing citric acid and phenolic compounds [bioflavonoids] as active ingredients), vinegar, lactic acid, and double combinations of Citrox, lactic acid and oregano were evaluated against Escherichia coli O157:H7 and total mesophilic microbiota on fresh-cut spinach and lettuce and for their impact on color of treated vegetables. Spinach and lettuce leaves were inoculated with E. coli O157:H7 to a level of 5-6 log CFU/g and immersed in washing solutions for 2 or 5 min at 20 °C, followed by rinsing with ice water (30s). Bacterial populations on vegetables were enumerated immediately after washing and after storage of the samples at 5 °C for 7 days under 20% CO2: 80% N2. No significant post-washing microbial reductions were achieved by chlorinated water, whereas after storage total microbiota was increased by 2.4 log CFU/g on lettuce. Vinegar wash was the most effective treatment causing E. coli O157:H7 reductions of 1.8-4.3 log CFU/g. During storage, pathogen was further decreased to below the detection limit level (<2 log CFU/g) and total microbiota exhibited the highest reductions compared to other treatments. Lactic acid reduced pathogen by 1.6-3.7 log CFU/g after washing; however levels of total microbiota increased by up to 2 log CFU/g on packaged lettuce during storage. Washing lettuce samples with oregano for 2 min resulted in 2.1 log CFU/g reduction of E. coli O157:H7. When Citrox was combined with oregano, 3.7-4.0 log CFU/g reduction was achieved on spinach and lettuce samples, with no significant effect on color parameters. Additionally, rinsing with ice water after decontamination treatments contributed to maintenance of color of the treated vegetables. In conclusion, the results indicated that vinegar, lactic acid or oregano aqueous extract alone or in combination, as alternative washing solutions to chlorine, may be effectively used to control E. coli O157:H7 and sustain acceptable appearance of fresh cut spinach and lettuce.


Subject(s)
Escherichia coli O157/drug effects , Food Handling/methods , Food Microbiology , Lactuca/microbiology , Spinacia oleracea/microbiology , Acetic Acid/pharmacology , Anti-Infective Agents/pharmacology , Colony Count, Microbial , Color , Lactuca/standards , Origanum/chemistry , Plant Extracts/pharmacology , Spinacia oleracea/standards
5.
Appl Microbiol Biotechnol ; 95(6): 1541-52, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22456628

ABSTRACT

Aim of the present study was to evaluate the effect of exogenous additions of 1,3-propanediol (1,3-PDO) on microbial growth and metabolites production of Clostridium butyricum VPI 1718 strain, during crude glycerol fermentation. Preliminary batch cultures in anaerobic Duran bottles revealed that early addition of 1,3-PDO caused growth cessation in rather low quantities (15 g/L), while 1,3-PDO additions during the middle exponential growth phase up to 70 g/L resulted in an almost linear decrease of the specific growth rate (µ), accompanied by reduced glycerol assimilation, with substrate consumption being used mainly for energy of maintenance requirements. During batch trials in a 3-L bioreactor, the strain proved able to withstand more than 70 g/L of both biologically produced and externally added 1,3-PDO, whereas glycerol assimilation and metabolite production were carried on at a lower rate. Adaptation of the strain in high 1,3-PDO concentration environments was validated during its continuous cultivation with pulses of 1,3-PDO in concentrations of 31 and 46 g/L, where no washout phenomena were noticed. As far as C. butyricum cellular lipids were concerned, during batch bioreactor cultivations, 1,3-PDO addition was found to favor the biosynthesis of unsaturated fatty acids. Also, fatty acid composition was studied during continuous cultures, in which additions of 1,3-PDO were performed at steady states. Lipids were globally more saturated compared to batch cultures, while by monitoring of the transitory phases, it was noticed that the gradual diol washout had an evident impact in the alteration of the fatty acid composition, by rendering them more unsaturated.


Subject(s)
Clostridium butyricum/metabolism , Culture Media/metabolism , Propylene Glycols/metabolism , Adaptation, Physiological , Bioreactors/microbiology , Clostridium butyricum/genetics , Clostridium butyricum/growth & development , Fatty Acids/metabolism , Fermentation , Glycerol/metabolism
6.
J Agric Food Chem ; 56(16): 7254-64, 2008 Aug 27.
Article in English | MEDLINE | ID: mdl-18646855

ABSTRACT

In this study, the essential oil and the phenolic composition along with the antioxidant activity of R. officinalis L. and S. fruticosa Miller, collected in Zakynthos island (Ionian Sea, Greece), were investigated. The essential oil composition of the plants was characterized by the presence of 1,8-cineole. Mean values of the antioxidant activities of rosemary and sage essential oils indicated slight differences. The antioxidant activity of sage oil was correlated with the oxygenated sesquiterpenes and diterpenes concentrations. Concerning the methanolic extracts, a close relationship between the phenolic content and the development stage during vegetative cycle of these plants was observed. The identified flavonoids, except rutin, seemed to increase with the advancement of developmental stages, while phenolic acids followed an opposite pattern. The antioxidant activity was correlated with the amount of total phenolic content.


Subject(s)
Antioxidants/analysis , Rosmarinus/chemistry , Salvia/chemistry , Cyclohexanols/analysis , Eucalyptol , Greece , Monoterpenes/analysis , Oils, Volatile/chemistry , Rosmarinus/growth & development , Salvia/growth & development , Seasons , Terpenes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...