Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Mol Cancer Ther ; 20(6): 1080-1091, 2021 06.
Article in English | MEDLINE | ID: mdl-33785652

ABSTRACT

Suppressive myeloid cells mediate resistance to immune checkpoint blockade. PI3Kγ inhibition can target suppressive macrophages, and enhance efficacy of immune checkpoint inhibitors. However, how PI3Kγ inhibitors function in different tumor microenvironments (TME) to activate specific immune cells is underexplored. The effect of the novel PI3Kγ inhibitor AZD3458 was assessed in preclinical models. AZD3458 enhanced antitumor activity of immune checkpoint inhibitors in 4T1, CT26, and MC38 syngeneic models, increasing CD8+ T-cell activation status. Immune and TME biomarker analysis of MC38 tumors revealed that AZD3458 monotherapy or combination treatment did not repolarize the phenotype of tumor-associated macrophage cells but induced gene signatures associated with LPS and type II INF activation. The activation biomarkers were present across tumor macrophages that appear phenotypically heterogenous. AZD3458 alone or in combination with PD-1-blocking antibodies promoted an increase in antigen-presenting (MHCII+) and cytotoxic (iNOS+)-activated macrophages, as well as dendritic cell activation. AZD3458 reduced IL-10 secretion and signaling in primary human macrophages and murine tumor-associated macrophages, but did not strongly regulate IL-12 as observed in other studies. Therefore, rather than polarizing tumor macrophages, PI3Kγ inhibition with AZD3458 promotes a cytotoxic switch of macrophages into antigen-presenting activated macrophages, resulting in CD8 T-cell-mediated antitumor activity with immune checkpoint inhibitors associated with tumor and peripheral immune activation.


Subject(s)
Class Ib Phosphatidylinositol 3-Kinase/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Animals , Disease Models, Animal , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Macrophages/drug effects , Mice
2.
J Med Chem ; 63(17): 9705-9730, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32787075

ABSTRACT

Muscle atrophy and cachexia are common comorbidities among patients suffering from cancer, chronic obstructive pulmonary disease, and several other chronic diseases. The peptide hormone ghrelin exerts pleiotropic effects including the stimulation of growth hormone secretion and subsequent increase of insulin-like growth factor-1 levels, an important mediator of muscle growth and repair. Ghrelin also acts on inflammation, appetite, and adipogenesis and therefore has been considered a promising therapeutic target for catabolic conditions. We previously reported on the synthesis and properties of an indane based series of ghrelin receptor full agonists which led to a sustained increase of insulin-like growth factor-1 in a dog pharmacodynamic study. Herein we report on the identification of a series of pyrrolidine or piperidine based full agonists and attempted optimization to give compounds with profiles suitable for progression as clinical candidates.


Subject(s)
Drug Design , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Receptors, Ghrelin/agonists , Animals , Dogs , HEK293 Cells , Humans , Pyrrolidines/pharmacokinetics , Rats
3.
J Med Chem ; 61(12): 5435-5441, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29852070

ABSTRACT

In this paper, we describe the discovery and optimization of a new chemotype of isoform selective PI3Kγ inhibitors. Starting from an HTS hit, potency and physicochemical properties could be improved to give compounds such as 15, which is a potent and remarkably selective PI3Kγ inhibitor with ADME properties suitable for oral administration. Compound 15 was advanced into in vivo studies showing dose-dependent inhibition of LPS-induced airway neutrophilia in rats when administered orally.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Adenosine Triphosphate/metabolism , Administration, Oral , Animals , Binding Sites , Biological Availability , Crystallography, X-Ray , Dogs , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Humans , Isoenzymes , Leukocyte Disorders/chemically induced , Leukocyte Disorders/drug therapy , Lipopolysaccharides/toxicity , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Phthalimides/chemistry , Rats , Structure-Activity Relationship
4.
J Med Chem ; 61(14): 5974-5987, 2018 07 26.
Article in English | MEDLINE | ID: mdl-29909635

ABSTRACT

Cachexia and muscle wasting are very common among patients suffering from cancer, chronic obstructive pulmonary disease, and other chronic diseases. Ghrelin stimulates growth hormone secretion via the ghrelin receptor, which subsequently leads to increase of IGF-1 plasma levels. The activation of the GH/IGF-1 axis leads to an increase of muscle mass and functional capacity. Ghrelin further acts on inflammation, appetite, and adipogenesis and for this reason was considered an important target to address catabolic conditions. We report the synthesis and properties of an indane based series of ghrelin receptor full agonists; they have been shown to generate a sustained increase of IGF-1 levels in dog and have been thoroughly investigated with respect to their functional activity.


Subject(s)
Indans/chemistry , Indans/pharmacology , Receptors, Ghrelin/agonists , Animals , HEK293 Cells , Humans , Indans/pharmacokinetics , Male , Models, Molecular , Protein Conformation , Rats , Receptors, Ghrelin/chemistry
5.
Bioorg Med Chem Lett ; 20(17): 5031-4, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20674351

ABSTRACT

A series of 2-pyrrolidinyl-N-methyl pyrimidones HIV integrase inhibitors has been explored leading to the identification of derivative 13, which showed high activity at inhibiting viral replication in cell culture, favorable pharmacokinetic profile in two preclinical species, and an attractive profile against a panel of HIV-integrase mutants.


Subject(s)
HIV Integrase Inhibitors/pharmacology , Pyrimidinones/pharmacology , Administration, Oral , Animals , Biological Availability , HIV Integrase Inhibitors/administration & dosage , HIV Integrase Inhibitors/pharmacokinetics , Pyrimidinones/administration & dosage , Pyrimidinones/pharmacokinetics , Rats
6.
Drug Deliv ; 17(4): 214-22, 2010 May.
Article in English | MEDLINE | ID: mdl-20233089

ABSTRACT

The purpose of this study was to investigate the in vivo absorption enhancement of a nucleoside (phosphoramidate prodrug of 2'-methyl-cytidine) anti-viral agent of proven efficacy by means of intestinal permeation enhancers. Natural nucleosides are hydrophilic molecules that do not rapidly penetrate cell membranes by diffusion and their absorption relies on specialized transporters. Therefore, the oral absorption of nucleoside prodrugs and the target organ concentration of the biologically active nucleotide can be limited due to poor permeation across the intestinal epithelium. In the present study, the specificity, concentration dependence, and effect of four classes of absorption promoters, i.e. fatty acids, steroidal detergents, mucoadhesive polymers, and secretory transport inhibitors, were evaluated in a rat in vivo model. Sodium caprate and alpha-tocopheryl-polyethyleneglycol-1000-succinate (TPGS) showed a significant effect in increasing liver concentration of nucleotide (5-fold). These results suggested that both excipients might be suited in a controlled release matrix for the synchronous release of the drug and absorption promoter directly to the site of absorption and highlights that the effect is strictly dependent on the absorption promoter dose. The feasibility of such a formulation approach in humans was evaluated with the aim of developing a solid dosage form for the peroral delivery of nucleosides and showed that these excipients do provide a potential valuable tool in pre-clinical efficacy studies to drive discovery programs forward.


Subject(s)
Cytidine/analogs & derivatives , Intestinal Absorption/drug effects , Intestinal Absorption/physiology , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Animals , Caco-2 Cells , Cytidine/chemistry , Cytidine/pharmacokinetics , Drug Synergism , Humans , Male , Mice , Mice, Knockout , Rats , Rats, Sprague-Dawley
7.
J Med Chem ; 52(17): 5394-407, 2009 Sep 10.
Article in English | MEDLINE | ID: mdl-19725579

ABSTRACT

The application of a phosphoramidate prodrug approach to 2'-C-methylcytidine (NM107), the first nucleoside inhibitor of the hepatitis C virus (HCV) NS5B polymerase, is reported. 2'-C-Methylcytidine, as its valyl ester prodrug (NM283), was efficacious in reducing the viral load in patients infected with HCV. Several of the phosphoramidates prepared demonstrated a 10- to 200-fold superior potency with respect to the parent nucleoside in the cell-based replicon assay. This is due to higher levels of 2'-C-methylcytidine triphosphate in the cells. These prodrugs are efficiently activated and converted to the triphosphate in hepatocytes of several species. Our SAR studies ultimately led to compounds that gave high levels of NTP in hamster and rat liver after subcutaneous dosing and that were devoid of the toxic phenol moiety usually found in ProTides.


Subject(s)
Amides/metabolism , Amides/therapeutic use , Antiviral Agents/metabolism , Cytidine/analogs & derivatives , Hepatitis C/drug therapy , Phosphoric Acids/metabolism , Phosphoric Acids/therapeutic use , Prodrugs/metabolism , Prodrugs/therapeutic use , Amides/pharmacology , Amides/toxicity , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/toxicity , Cell Line , Cytidine/metabolism , Cytidine/pharmacology , Cytidine/therapeutic use , Cytidine/toxicity , Hepacivirus/drug effects , Hepacivirus/physiology , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/virology , Humans , Phosphoric Acids/pharmacology , Phosphoric Acids/toxicity , Polyphosphates/metabolism , Prodrugs/pharmacology , Prodrugs/toxicity , Structure-Activity Relationship , Virus Replication/drug effects
8.
Bioorg Med Chem Lett ; 19(16): 4617-21, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19616948

ABSTRACT

In the context of HIV-integrase, dihydroxypyrimidine and N-methyl pyrimidone inhibitors the cellular activity of this class of compounds has been optimized by the introduction of a simple methyl substituent in the alpha-position of the C-2 side chains. Enhanced passive membrane permeability has been identified as the key factor driving the observed cell-based activity improvement. The rat PK profile of the alpha-methyl derivative 26a was also improved over its des-methyl exact analog.


Subject(s)
HIV Integrase Inhibitors/chemistry , HIV Integrase/chemistry , Pyrimidines/chemistry , Pyrimidinones/chemistry , Animals , Cell Membrane Permeability , HIV Integrase/metabolism , HIV Integrase Inhibitors/chemical synthesis , HIV Integrase Inhibitors/pharmacokinetics , Humans , Protein Binding , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Pyrimidinones/chemical synthesis , Pyrimidinones/pharmacokinetics , Rats
9.
J Med Chem ; 52(15): 4820-37, 2009 Aug 13.
Article in English | MEDLINE | ID: mdl-19624135

ABSTRACT

In a follow-up to our recent disclosure of P2-P4 macrocyclic inhibitors of the hepatitis C virus (HCV) NS3 protease (e.g., 1, Chart 1), we report a new but related compound series featuring a basic amine at the N-terminus of the P3-amino acid residue. Replacement of the electroneutral P3-amino acid capping group (which is a feature of almost all tripeptide-like inhibitors of NS3 reported to date) with a basic group is not only tolerated but can result in advantageous cell based potency. Optimization of this new class of P3-amine based inhibitors gave compounds such as 25 and 26 that combine excellent cell based activity with pharmacokinetic properties that are attractive for an antiviral targeting HCV.


Subject(s)
Amines/chemical synthesis , Antiviral Agents/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Amines/pharmacokinetics , Amines/pharmacology , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Dogs , Drug Discovery , Male , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
10.
Eur J Med Chem ; 44(9): 3765-70, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19493593

ABSTRACT

The currently approved treatment for hepatitis C virus infections is a combination of Ribavirin and pegylated Interferon. It leads to a sustained virologic response in approximately only half of the patients treated. For this reason there is an urgent need of new therapeutic agents. 2'-C-Methylcytidine is the first nucleoside inhibitor of the HCV NS5B polymerase that was efficacious in reducing the viral load in patients infected with HCV. The application of a monophosphate prodrug approach based on unprecedented cyclic phosphoramidates is reported. Our SAR studies led to compounds that are efficiently converted to the active triphosphate in human hepatocytes.


Subject(s)
Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Cytidine/analogs & derivatives , Hepacivirus/drug effects , Hepatitis C/drug therapy , Prodrugs/pharmacology , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Cricetinae , Cytidine/administration & dosage , Cytidine/chemistry , Cytidine/metabolism , Cytidine/pharmacology , Drug Stability , Hepatocytes/virology , Humans , Prodrugs/administration & dosage , Prodrugs/chemistry , Prodrugs/metabolism , Structure-Activity Relationship
12.
J Med Chem ; 51(18): 5843-55, 2008 Sep 25.
Article in English | MEDLINE | ID: mdl-18763751

ABSTRACT

Human immunodeficiency virus type-1 (HIV-1) integrase is one of the three virally encoded enzymes required for replication and therefore a rational target for chemotherapeutic intervention in the treatment of HIV-1 infection. We report here the discovery of Raltegravir, the first HIV-integrase inhibitor approved by FDA for the treatment of HIV infection. It derives from the evolution of 5,6-dihydroxypyrimidine-4-carboxamides and N-methyl-4-hydroxypyrimidinone-carboxamides, which exhibited potent inhibition of the HIV-integrase catalyzed strand transfer process. Structural modifications on these molecules were made in order to maximize potency as HIV-integrase inhibitors against the wild type virus, a selection of mutants, and optimize the selectivity, pharmacokinetic, and metabolic profiles in preclinical species. The good profile of Raltegravir has enabled its progression toward the end of phase III clinical trials for the treatment of HIV-1 infection and culminated with the FDA approval as the first HIV-integrase inhibitor for the treatment of HIV-1 infection.


Subject(s)
HIV Infections/drug therapy , HIV Integrase Inhibitors/pharmacology , Pyrrolidinones/pharmacology , Administration, Oral , Area Under Curve , Biological Availability , HIV Integrase Inhibitors/administration & dosage , HIV Integrase Inhibitors/pharmacokinetics , HIV Integrase Inhibitors/therapeutic use , Half-Life , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Pyrrolidinones/administration & dosage , Pyrrolidinones/pharmacokinetics , Pyrrolidinones/therapeutic use , Raltegravir Potassium
13.
J Med Chem ; 51(4): 861-74, 2008 Feb 28.
Article in English | MEDLINE | ID: mdl-18217703

ABSTRACT

HIV integrase is one of the three enzymes encoded by HIV genome and is essential for viral replication, but integrase inhibitors as marketed drugs have just very recently started to emerge. In this study, we show the evolution from the N-methylpyrimidinone structure to bicyclic pyrimidinones. Introduction of a suitably substituted amino moiety modulated the physical-chemical properties of the molecules and conferred nanomolar activity in the inhibition of spread of HIV-1 infection in cell culture. An extensive SAR study led to sulfamide (R)- 22b, which inhibited the strand transfer with an IC50 of 7 nM and HIV infection in MT4 cells with a CIC95 of 44 nM, and ketoamide (S)- 28c that inhibited strand transfer with an IC50 of 12 nM and the HIV infection in MT4 cells with a CIC95 of 13 nM and exhibited a good pharmacokinetic profile when dosed orally to preclinical species.


Subject(s)
Aminopyridines/chemical synthesis , Azepines/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , HIV Integrase Inhibitors/chemical synthesis , HIV Integrase/metabolism , Pyrimidinones/chemical synthesis , Administration, Oral , Aminopyridines/pharmacokinetics , Aminopyridines/pharmacology , Animals , Azepines/pharmacokinetics , Azepines/pharmacology , Biological Availability , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line , Dogs , HIV Integrase/genetics , HIV Integrase Inhibitors/pharmacokinetics , HIV Integrase Inhibitors/pharmacology , HIV-1/drug effects , Humans , Macaca mulatta , Microsomes, Liver/metabolism , Pyrimidinones/pharmacokinetics , Pyrimidinones/pharmacology , Rats , Stereoisomerism , Structure-Activity Relationship
14.
J Med Chem ; 50(20): 4953-75, 2007 Oct 04.
Article in English | MEDLINE | ID: mdl-17824681

ABSTRACT

The human immunodeficiency virus type-1 (HIV-1) encodes three enzymes essential for viral replication: a reverse transcriptase, a protease, and an integrase. The latter is responsible for the integration of the viral genome into the human genome and, therefore, represents an attractive target for chemotherapeutic intervention against AIDS. A drug based on this mechanism has not yet been approved. Benzyl-dihydroxypyrimidine-carboxamides were discovered in our laboratories as a novel and metabolically stable class of agents that exhibits potent inhibition of the HIV integrase strand transfer step. Further efforts led to very potent compounds based on the structurally related N-Me pyrimidone scaffold. One of the more interesting compounds in this series is the 2-N-Me-morpholino derivative 27a, which shows a CIC95 of 65 nM in the cell in the presence of serum. The compound has favorable pharmacokinetic properties in three preclinical species and shows no liabilities in several counterscreening assays.


Subject(s)
HIV Integrase Inhibitors/chemical synthesis , HIV Integrase/chemistry , HIV-1/drug effects , Morpholines/chemical synthesis , Pyrimidinones/chemical synthesis , Administration, Oral , Animals , Biological Availability , Blood Proteins/metabolism , Cell Line, Tumor , Dogs , HIV Integrase Inhibitors/pharmacokinetics , HIV Integrase Inhibitors/pharmacology , HIV-1/enzymology , HIV-1/physiology , Humans , Macaca mulatta , Morpholines/pharmacokinetics , Morpholines/pharmacology , Protein Binding , Pyrimidinones/pharmacokinetics , Pyrimidinones/pharmacology , Rats , Stereoisomerism , Structure-Activity Relationship , Virus Replication/drug effects
15.
J Med Chem ; 50(9): 2225-39, 2007 May 03.
Article in English | MEDLINE | ID: mdl-17428043

ABSTRACT

Human immunodeficiency virus type-1 (HIV-1) integrase, one of the three constitutive viral enzymes required for replication, is a rational target for chemotherapeutic intervention in the treatment of AIDS that has also recently been confirmed in the clinical setting. We report here on the design and synthesis of N-benzyl-5,6-dihydroxypyrimidine-4-carboxamides as a class of agents which exhibits potent inhibition of the HIV-integrase-catalyzed strand transfer process. In the current study, structural modifications on these molecules were made in order to examine effects on HIV-integrase inhibitory potencies. One of the most interesting compounds for this series is 2-[1-(dimethylamino)-1-methylethyl]-N-(4-fluorobenzyl)-5,6-dihydroxypyrimidine-4-carboxamide 38, with a CIC95 of 78 nM in the cell-based assay in the presence of serum proteins. The compound has favorable pharmacokinetic properties in preclinical species (rats, dogs, and monkeys) and shows no liabilities in several counterscreening assays, highlighting its potential as a clinically useful antiviral agent.


Subject(s)
HIV Integrase Inhibitors/chemical synthesis , HIV-1/drug effects , Pyridines/chemical synthesis , Pyrimidines/chemical synthesis , Animals , Biological Availability , Blood Proteins/metabolism , Cell Line, Tumor , Dogs , HIV Integrase Inhibitors/pharmacokinetics , HIV Integrase Inhibitors/pharmacology , Half-Life , Humans , Macaca mulatta , Protein Binding , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rats , Structure-Activity Relationship , Virus Replication
16.
J Med Chem ; 49(23): 6646-9, 2006 Nov 16.
Article in English | MEDLINE | ID: mdl-17154493

ABSTRACT

The dihydroxypyrimidine carboxamide 4a was discovered as a potent and selective HIV integrase strand transfer inhibitor. The optimization of physicochemical properties, pharmacokinetic profiles, and potency led to the identification of 13 in the dihydroxypyrimidine series and 18 in the N-methylpyrimidinone series having low nanomolar activity in the cellular HIV spread assay in the presence of 50% normal human serum and very good pharmacokinetics in preclinical species.


Subject(s)
Amides/chemical synthesis , HIV Integrase Inhibitors/chemical synthesis , Pyrimidines/chemical synthesis , Administration, Oral , Amides/chemistry , Amides/pharmacology , Animals , Biological Availability , Dogs , HIV Integrase Inhibitors/pharmacokinetics , HIV Integrase Inhibitors/pharmacology , HIV-1/drug effects , Humans , In Vitro Techniques , Macaca mulatta , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidinones/chemical synthesis , Pyrimidinones/pharmacokinetics , Pyrimidinones/pharmacology , Rats , Serum , Structure-Activity Relationship , Virus Replication
17.
J Med Chem ; 47(26): 6443-6, 2004 Dec 16.
Article in English | MEDLINE | ID: mdl-15588076

ABSTRACT

The design of a series of peptidomimetic inhibitors of the hepatitis C virus NS3 protease is described. These inhibitors feature an indoline-2-carboxamide as a novel heterocyclic replacement for the P3 amino acid residue and N-terminal capping group of tripeptide based inhibitors. The crystal structure of the ternary NS3/NS4A/inhibitor complex for the most active molecule in this series highlights its suitability as an N-terminal capping group of a dipeptide inhibitor of the NS3 protease.


Subject(s)
Antiviral Agents/chemical synthesis , Hepacivirus/enzymology , Indoles/chemical synthesis , Oligopeptides/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Antiviral Agents/chemistry , Crystallography, X-Ray , Indoles/chemistry , Models, Molecular , Molecular Mimicry , Molecular Structure , Protein Binding , Stereoisomerism
18.
Bioorg Med Chem Lett ; 14(9): 2151-4, 2004 May 03.
Article in English | MEDLINE | ID: mdl-15080998

ABSTRACT

The N-terminal aminoacid of phenethylamide tripeptide inhibitors of the hepatitis C virus NS3 protease can be replaced with an alpha-hydroxy acid to obtain more 'drug like' inhibitors with low micromolar activity. The preferred S-configuration of the capping residue can be explained by molecular modeling studies.


Subject(s)
Amides/pharmacology , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Amides/chemistry , Models, Molecular , Protease Inhibitors/chemistry
19.
J Org Chem ; 68(11): 4215-34, 2003 May 30.
Article in English | MEDLINE | ID: mdl-12762720

ABSTRACT

The convergent, highly enantioselective synthesis of rhizoxin D, a natural product possessing potent antitumor and antifungal bioactivity, is described. The C(1)-C(9) fragment of the molecule was synthesized utilizing a threefold pseudosymmetric intermediate ultimately derived from gamma-butyrolactone. The central core of rhizoxin D was prepared via a chiral resolution/asymmetric aldol protocol. Several methods for the generation of the polyene fragment were explored, and the side-chain was ultimately prepared from serine in six steps. The unification of the left and right wings of the molecule was achieved using a one-step olefination protocol, and the macrocyclization was carried out using a Horner-Emmons olefination at the C(2)-C(3) olefin.


Subject(s)
Antineoplastic Agents/chemical synthesis , Lactones/chemical synthesis , Alkenes/chemistry , Antineoplastic Agents/pharmacology , Catalysis , Cyclization , Indicators and Reagents , Lactones/pharmacology , Macrolides , Molecular Structure , Stereoisomerism
20.
Bioorg Med Chem Lett ; 12(22): 3325-8, 2002 Nov 18.
Article in English | MEDLINE | ID: mdl-12392743

ABSTRACT

The N-terminal aminoacid of alpha-ketotripeptide inhibitors of the hepatitis C virus NS3 protease can be replaced with an alpha-hydroxy acid, leading to capped dipeptide inhibitors such as 20 with an IC(50) value of 3.0 microM. The importance of the lipophilic side chain interactions at S3 of the protease and the requirement of the capping residue with R configuration have been explained by molecular modeling studies.


Subject(s)
Dipeptides/pharmacology , Enzyme Inhibitors/chemical synthesis , Keto Acids/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Binding Sites , Dipeptides/chemical synthesis , Enzyme Inhibitors/pharmacology , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Inhibitory Concentration 50 , Models, Molecular , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...