Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Type of study
Publication year range
1.
Planta ; 213(4): 575-85, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11556790

ABSTRACT

As shown before [C. Ottander et al. (1995) Planta 197:176-183], there is a severe inhibition of the photosystem (PS) II photochemical efficiency of Scots pine (Pinus sylvestris L.) during the winter. In contrast, the in vivo PSI photochemistry is less inhibited during winter as shown by in vivo measurements of deltaA820/A820 (P700+). There was also an enhanced cyclic electron transfer around PSI in winter-stressed needles as indicated by 4-fold faster reduction kinetics of P700+. The differential functional stability of PSII and PSI was accompanied by a 3.7-fold higher intersystem electron pool size, and a 5-fold increase in the stromal electron pool available for P700+ reduction. There was also a strong reduction of the QB band in the thermoluminescence glow curve and markedly slower Q-A re-oxidation in needles of winter pine, indicating an inhibition of electron transfer between QA and QB. The data presented indicate that the plastoquinone pool is largely reduced in winter pine, and that this reduced state is likely to be of metabolic rather than photochemical origin. The retention of PSI photochemistry, and the suggested metabolic reduction of the plastoquinone pool in winter stressed needles of Scots pine are discussed in terms of the need for enhanced photoprotection of the needles during the winter and the role of metabolically supplied energy for the recovery of photosynthesis from winter stress in evergreens.


Subject(s)
Adaptation, Physiological , Photosynthesis/physiology , Photosynthetic Reaction Center Complex Proteins/metabolism , Pinus/physiology , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Chlorophyll/metabolism , Electron Transport , Light-Harvesting Protein Complexes , Oxidation-Reduction , Photochemistry , Pinus sylvestris , Plant Leaves/physiology , Plastoquinone/metabolism , Seasons , Temperature
2.
Planta ; 212(5-6): 880-7, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11346965

ABSTRACT

Potato (Solanum tuberosum L. cv. Desiré) plants with reduced amounts of P-protein, one of the subunits of glycine decarboxylase (GDC), have been generated by introduction of an antisense transgene. Two transgenic lines, containing about 60-70% less P-protein in the leaves compared to wild-type potato, were analysed in more detail. The reduction in P-protein amount led to a decrease in the ability of leaf mitochondria to decarboxylate glycine. Photosynthetic and growth rates were reduced but the plants were viable under ambient air and produced tubers. Glycine concentrations within the leaves were elevated up to about 100-fold during illumination. Effects on other amino acids and on sucrose and hexoses were minor. Nearly all of the glycine accumulated during the day was metabolised during the following night. The data suggest that the GDC operates far below substrate saturation under normal conditions thus allowing a flexible and fast response to changes in the environment.


Subject(s)
Amino Acid Oxidoreductases/metabolism , Antisense Elements (Genetics) , Glycine/metabolism , Mitochondria/enzymology , Solanum tuberosum/metabolism , Amino Acid Oxidoreductases/isolation & purification , Amino Acids/analysis , Carbon Dioxide/metabolism , Chlorophyll/analysis , Chromosome Mapping , Glycine Dehydrogenase (Decarboxylating) , Light , Oxygen Consumption/physiology , Phenotype , Photosynthesis/physiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plants, Genetically Modified , Serine/metabolism , Solanum tuberosum/genetics
3.
Photosynth Res ; 67(3): 177-84, 2001.
Article in English | MEDLINE | ID: mdl-16228305

ABSTRACT

Carbon isotope effects were investigated for the reaction catalyzed by the glycine decarboxylase complex (GDC; EC 2.1.2.10). Mitochondria isolated from leaves of pea (Pisum sativum L.) and spinach (Spinacia oleracea L.) were incubated with glycine, and the CO(2) evolved was analyzed for the carbon isotope ratio (delta(13)C). Within the range of parameters tested (temperature, pH, combination of cofactors NAD(+), ADP, pyridoxal 5-phosphate), carbon isotope shifts of CO(2) relative to the C(1)-carboxyl carbon of glycine varied from +14 per thousand to -7 per thousand. The maximum effect of cofactors was observed for NAD(+), the removal of which resulted in a strong (12)C enrichment of the CO(2) evolved. This indicates the possibility of isotope effects with both positive and negative signs in the GDC reaction. The measurement of delta(13)C in the leaves of the GDC-deficient barley (Hordeum vulgare L.) mutant (LaPr 87/30) plants indicated that photorespiratory carbon isotope fractionation, opposite in sign when compared to the carbon isotope effect during CO(2) photoassimilation, takes place in vivo. Thus the key reaction of photorespiration catalyzed by GDC, together with the key reaction of CO(2) fixation catalyzed by ribulose-1,5-bisphosphate carboxylase, both contribute to carbon isotope fractionation in photosynthesis.

4.
Planta ; 214(2): 295-303, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11800395

ABSTRACT

The effects of short-term cold stress and long-term cold acclimation on the light reactions of photosynthesis were examined in vivo to assess their contributions to photosynthetic acclimation to low temperature in Arabidopsis thaliana (L.) Heynh.. All photosynthetic measurements were made at the temperature of exposure: 23 degrees C for non-acclimated plants and 5 degrees C for cold-stressed and cold-acclimated plants. Three-day cold-stress treatments at 5 degrees C inhibited light-saturated rates of CO2 assimilation and O2 evolution by approximately 75%. The 3-day exposure to 5 degrees C also increased the proportion of reduced QA by 50%, decreased the yield of PSII electron transport by 65% and decreased PSI activity by 31%. In contrast, long-term cold acclimation resulted in a strong but incomplete recovery of light-saturated photosynthesis at 5 degrees C. The rates of light-saturated CO2 and O2 gas exchange and the in vivo yield of PSII activity under light-saturating conditions were only 35-40% lower, and the relative redox state of QA only 20% lower, at 5 degrees C after cold acclimation than in controls at 23 degrees C. PSI activity showed full recovery during long-term cold acclimation. Neither short-term cold stress nor long-term cold acclimation of Arabidopsis was associated with a limitation in ATP, and both treatments resulted in an increase in the ATP/NADPH ratio. This increase in ATP/NADPH was associated with an inhibition of PSI cyclic electron transport but there was no apparent change in the Mehler reaction activity in either cold-stressed or cold-acclimated leaves. Cold acclimation also resulted in an increase in the reduction state of the stroma, as indicated by an increased total activity and activation state of NADP-dependent malate dehydrogenase, and increased light-dependent activities of the major regulatory enzymes of the oxidative pentose-phosphate pathway. We suggest that the photosynthetic capacity during cold stress as well as cold acclimation is altered by limitations at the level of consumption of reducing power in carbon metabolism.


Subject(s)
Acclimatization/physiology , Arabidopsis/physiology , Chloroplasts/physiology , Photosynthesis/physiology , Adenosine Triphosphate/metabolism , Carbon/metabolism , Carbon Dioxide/metabolism , Carbon Dioxide/radiation effects , Chlorophyll/metabolism , Chlorophyll A , Cold Temperature , Fluorescence , Light , Light-Harvesting Protein Complexes , NAD/metabolism , NADP/metabolism , Oxidation-Reduction , Oxygen Consumption/physiology , Oxygen Consumption/radiation effects , Photosynthesis/radiation effects , Photosynthetic Reaction Center Complex Proteins/metabolism , Photosynthetic Reaction Center Complex Proteins/radiation effects , Plant Leaves/physiology , Starch/metabolism , Sucrose/metabolism
5.
Plant J ; 23(6): 759-70, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10998187

ABSTRACT

Photosynthetic carbon metabolism was investigated in antisense Arabidopsis lines with decreased expression of sucrose phosphate synthase (SPS) and cytosolic fructose-1,6-bisphosphatase (cFBPase). In the light, triose phosphates are exported from the chloroplast and converted to sucrose via cFBPase and SPS. At night, starch is degraded to glucose, exported and converted to sucrose via SPS. cFBPase therefore lies upstream and SPS downstream of the point at which the pathways for sucrose synthesis in the day and night converge. Decreased cFBPase expression led to inhibition of sucrose synthesis; accumulation of phosphorylated intermediates; Pi-limitation of photosynthesis; and stimulation of starch synthesis. The starch was degraded to maintain higher levels of sugars and a higher rate of sucrose export during the night. This resembles the response in other species when expression of enzymes in the upper part of the sucrose biosynthesis pathway is reduced. Decreased expression of SPS inhibited sucrose synthesis, but phosphorylated intermediates did not accumulate and carbon partitioning was not redirected towards starch. Sugar levels and sucrose export was decreased during the night as well as during the day. Although ribulose-1,5-bisphosphate regeneration and photosynthesis were inhibited, the PGA/triose-P ratio remained low and the ATP/ADP ratio high, showing that photosynthesis was not limited by the rate at which Pi was recycled during end-product synthesis. Two novel responses counteracted the decrease in SPS expression and explain why phosphorylated intermediates did not accumulate, and why allocation was not altered in the antisense SPS lines. Firstly, a threefold decrease of PPi and a shift of the UDP-glucose/hexose phosphate ratio favoured sucrose synthesis and prevented the accumulation of phosphorylated intermediates. Secondly, there was no increase of AGPase activity relative to cFBPase activity, which would prevent a shift in carbon allocation towards starch synthesis. These responses are presumably triggered when sucrose synthesis is decreased in the night, as well as by day.


Subject(s)
Arabidopsis/physiology , Carbon/metabolism , Fructose-Bisphosphatase/metabolism , Glucosyltransferases/metabolism , Photosynthesis , Plants, Genetically Modified/physiology , Sucrose/metabolism , Arabidopsis/enzymology , Biological Transport , Carbon Dioxide/metabolism , Cytosol/enzymology , Plants, Genetically Modified/enzymology
6.
Biochem Biophys Res Commun ; 265(1): 106-11, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10548498

ABSTRACT

Inside-out submitochondrial particles from both potato tubers and pea leaves catalyze the transfer of hydride equivalents from NADPH to NAD(+) as monitored with a substrate-regenerating system. The NAD(+) analogue acetylpyridine adenine dinucleotide is also reduced by NADPH and incomplete inhibition by the complex I inhibitor diphenyleneiodonium (DPI) indicates that two enzymes are involved in this reaction. Gel-filtration chromatography of solubilized mitochondrial membrane complexes confirms that the DPI-sensitive TH activity is due to NADH-ubiquinone oxidoreductase (EC 1.6.5.3, complex I), whereas the DPI-insensitive activity is due to a separate enzyme eluting around 220 kDa. The DPI-insensitive TH activity is specific for the 4B proton on NADH, whereas there is no indication of a 4A-specific activity characteristic of a mammalian-type energy-linked TH. The DPI-insensitive TH may be similar to the soluble type of transhydrogenase found in, e.g., Pseudomonas. The presence of non-energy-linked TH activities directly coupling the matrix NAD(H) and NADP(H) pools will have important consequences for the regulation of NADP-linked processes in plant mitochondria.


Subject(s)
Mitochondria/enzymology , NADP Transhydrogenases/metabolism , Pisum sativum/enzymology , Solanum tuberosum/enzymology , Chromatography, Gel , Intracellular Membranes/enzymology , Isoenzymes/isolation & purification , Isoenzymes/metabolism , Kinetics , NAD/metabolism , NADP/metabolism , NADP Transhydrogenases/isolation & purification , Plant Leaves , Plant Roots , Substrate Specificity
7.
Plant Physiol ; 119(4): 1387-98, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10198098

ABSTRACT

Photosynthetic and metabolic acclimation to low growth temperatures were studied in Arabidopsis (Heynh.). Plants were grown at 23 degrees C and then shifted to 5 degrees C. We compared the leaves shifted to 5 degrees C for 10 d and the new leaves developed at 5 degrees C with the control leaves on plants that had been left at 23 degrees C. Leaf development at 5 degrees C resulted in the recovery of photosynthesis to rates comparable with those achieved by control leaves at 23 degrees C. There was a shift in the partitioning of carbon from starch and toward sucrose (Suc) in leaves that developed at 5 degrees C. The recovery of photosynthetic capacity and the redirection of carbon to Suc in these leaves were associated with coordinated increases in the activity of several Calvin-cycle enzymes, even larger increases in the activity of key enzymes for Suc biosynthesis, and an increase in the phosphate available for metabolism. Development of leaves at 5 degrees C also led to an increase in cytoplasmic volume and a decrease in vacuolar volume, which may provide an important mechanism for increasing the enzymes and metabolites in cold-acclimated leaves. Understanding the mechanisms underlying such structural changes during leaf development in the cold could result in novel approaches to increasing plant yield.


Subject(s)
Arabidopsis/metabolism , Acclimatization , Arabidopsis/growth & development , Arabidopsis/ultrastructure , Cell Compartmentation , Cold Climate , Cytoplasm/ultrastructure , Microscopy, Electron , Phosphates/metabolism , Photosynthesis , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/ultrastructure , Starch/metabolism , Sucrose/metabolism , Vacuoles/ultrastructure
8.
Plant Physiol ; 116(2): 637-41, 1998 Feb 01.
Article in English | MEDLINE | ID: mdl-9490764

ABSTRACT

The time course of and the influence of light intensity and light quality on the induction of a mitochondrial carbonic anhydrase (CA) in the unicellular green alga Chlamydomonas reinhardtii was characterized using western and northern blots. This CA was expressed only under low-CO2 conditions (ambient air). In asynchronously grown cells, the mRNA was detected 15 min after transfer from air containing 5% CO2 to ambient air, and the 21-kD polypeptide was detected on western blots after 1 h. When transferred back to air containing 5% CO2, the mRNA disappeared within 1 h and the polypeptide was degraded within 3 d. Photosynthesis was required for the induction in asynchronous cultures. The induction increased with light up to 500 mumol m-2 s-1, where saturation occurred. In cells grown synchronously, however, expression of the mitochondrial CA was also detected in darkness. Under such conditions the expression followed a circadian rhythm, with mRNA appearing in the dark 30 min before the light was turned on. Algae left in darkness continued this rhythm for several days.

9.
Plant J ; 12(3): 605-14, 1997 Sep.
Article in English | MEDLINE | ID: mdl-9351245

ABSTRACT

Arabidopsis thaliana plants were grown at 23 degrees C and changes in carbohydrate metabolism, photosynthesis and photosynthetic gene expression were studied after the plants were shifted to 5 degrees C. The responses of leaves shifted to 5 degrees C after development at 23 degrees C are compared to leaves that developed at 5 degrees C. Shifting warm developed leaves to 5 degrees C lead to a severe suppression of photosynthesis that correlated with a rapid and sustained accumulation of hexose phosphates and soluble sugars. Associated with the suppression of photosynthesis and the accumulation of soluble sugars was a reduction in the amount of transcript for genes encoding photosynthetic proteins (cab and rbcS). In contrast, leaves that developed at 5 degrees C showed an increase in photosynthesis and control levels of photosynthetic gene expression. This recovery occurred even though leaves that developed at 5 degrees C maintained large pools of soluble sugars. Leaves that developed at 5 degrees C also showed a strong upregulation of the cytosolic pathway for soluble sugar synthesis but not of the chloroplastic pathway for starch synthesis. This was shown at the level of both enzyme activity and the amount of transcript. Thus, development of Arabidopsis leaves at 5 degrees C resulted in metabolic changes that enabled them to produce and accumulate large soluble sugar pools without any associated suppression of photosynthesis or photosynthetic gene expression. These changes were also associated with enhanced freezing tolerance. We suggest that this reprogramming of carbohydrate metabolism associated with development at low temperature is essential to the development of full freezing tolerance and for winter survival of over-wintering herbaceous annuals.


Subject(s)
Arabidopsis/growth & development , Carbohydrate Metabolism , Gene Expression , Photosynthesis/genetics , Adaptation, Physiological/genetics , Arabidopsis/genetics , Arabidopsis Proteins , Chlorophyllides/metabolism , Cold Temperature , Fluorescence , Fructose-Bisphosphatase/metabolism , Glucose-1-Phosphate Adenylyltransferase , Glucosyltransferases/metabolism , Nucleotidyltransferases/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Solubility
10.
FEBS Lett ; 412(2): 265-9, 1997 Jul 28.
Article in English | MEDLINE | ID: mdl-9256232

ABSTRACT

Metabolism of glycine in isolated mitochondria and protoplasts was investigated in photosynthetic, etiolated (barley and pea leaves) and fat-storing (maize scutellum) tissues using methods of [1-(14)C]glycine incorporation and counting of 14CO2 evolved, oxymetric measurement of glycine oxidation and rapid fractionation of protoplasts incubated in photorespiratory conditions with consequent determination of ATP/ADP ratios in different cell compartments. The involvement of different paths of electron transport in mitochondria during operation of glycine decarboxylase complex (GDC) was tested in different conditions, using aminoacetonitrile (AAN), the inhibitor of glycine oxidation in mitochondria, rotenone, the inhibitor of Complex I of mitochondrial electron transport, and inhibitors of cytochrome oxidase and alternative oxidase. It was shown that glycine has a preference to other substrates oxidized in mitochondria only in photosynthetic tissue where succinate and malate even stimulated its oxidation. Rotenone had no or small effect on glycine oxidation, whereas the role of cyanide-resistant path increased in the presence of ATP. Glycine oxidation increased ATP/ADP ratio in cytosol of barley protoplasts incubated in the presence of CO2, but not in the CO2-free medium indicating that in conditions of high photorespiratory flux oxidation of NADH formed in the GDC reaction passes via the non-coupled paths. Activity of GDC in fat-storing tissue correlated with the activity of glyoxylate-cycle enzymes, glycine oxidation did not reveal preference to other substrates and the involvement of paths non-connected with proton translocation was not pronounced. It is suggested that the preference of glycine to other substrates oxidized in mitochondria is achieved in photosynthetic tissue by switching to rotenone-insensitive intramitochrondrial NADH oxidation and by increasing of alternative oxidase involvement in the presence of glycine.


Subject(s)
Cyanides/pharmacology , Glycine/metabolism , Mitochondria/drug effects , Plants/metabolism , Rotenone/pharmacology , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Oxidoreductases/metabolism , Electron Transport , Glycine Decarboxylase Complex , Glycine Dehydrogenase (Decarboxylating) , Mitochondria/metabolism , Oxidation-Reduction , Oxygen/metabolism , Plant Leaves/metabolism , Plants/enzymology
11.
Proc Natl Acad Sci U S A ; 93(21): 12031-4, 1996 Oct 15.
Article in English | MEDLINE | ID: mdl-8876257

ABSTRACT

In green unicellular algae, several polypeptides are induced upon exposure to limiting CO2. We report here on the localization and characterization of one of these, a 22-kDa polypeptide in Chlamydomonas reinhardtii. This nuclear-encoded polypeptide is induced in the mitochondria by a lowering of the partial pressure of CO2 in the growth medium from 5% to air CO2 levels. Sequencing of two different cDNA clones coding for the polypeptide identified it as a 20.7-kDa beta-type carbonic anhydrase (CA; carbonate dehydratase, carbonate hydro-lyase, EC 4.2.1.1). The two clones differ in their nucleotide sequences but code for identical proteins, showing that this CA is encoded by at least two genes. Northern blot hybridization reveals that mRNA transcripts are only present in cells transferred to air CO2 levels. A comparison of the deduced amino acid sequence with those of other beta-CAs shows the largest degree of similarity with CA from the cyanobacterium Synechocystis (50% identity and 66% similarity). To our knowledge, this is the first identification and characterization of a mitochondrial CA from a photosynthetic organism.


Subject(s)
Carbonic Anhydrases/biosynthesis , Carbonic Anhydrases/chemistry , Chlamydomonas reinhardtii/enzymology , Mitochondria/enzymology , Phylogeny , Plants/enzymology , Amino Acid Sequence , Animals , Base Sequence , Carbon Dioxide , Chlamydomonas reinhardtii/classification , Cyanobacteria/classification , Cyanobacteria/enzymology , Enzyme Induction , Escherichia coli/classification , Escherichia coli/enzymology , Molecular Sequence Data , Plants/classification , Sequence Homology, Amino Acid
12.
Plant Physiol ; 111(3): 713-719, 1996 Jul.
Article in English | MEDLINE | ID: mdl-12226322

ABSTRACT

In the dark, all decarboxylation reactions are associated with the oxidase reactions of mitochondrial electron transport. In the light, photorespiration is also active in photosynthetic cells. In winter rye (Secale cereale L.), cold hardening resulted in a 2-fold increase in the rate of dark respiratory CO2 release from leaves compared with nonhardened (NH) controls. However, in the light, NH and cold-hardened (CH) leaves had comparable rates of oxidase decarboxylation and total intracellular decarboxylation. Furthermore, whereas CH leaves showed similar rates of total oxidase decarboxylation in the dark and light, NH leaves showed a 2-fold increase in total oxidase activity in the light compared with the dark. Light suppressed oxidase decarboxylation of end products of photosynthesis 2-fold in NH leaves and 3-fold in CH leaves in air. However, in high-CO2, light did not suppress the oxidase decarboxylation of end products. Thus, the decrease in oxidase decarboxylation of end products observed in the light and in air reflected glycolate-cycle-related inhibition of tricarboxylic acid cycle activity. We also showed that the glycolate cycle was involved in the decarboxylation of the end products of photosynthesis in both NH and CH leaves, suggesting a flow of fixed carbon out of the starch pool in the light.

13.
Biochim Biophys Acta ; 1289(3): 343-50, 1996 Apr 17.
Article in English | MEDLINE | ID: mdl-8620018

ABSTRACT

The regulation of the supply of oxaloacetate (OAA) for mitochondrial metabolism via phosphoenolpyruvate carboxylase (PEPC) by covalent modification is studied in barley (Hordeum vulgare L.) leaf protoplasts in light or darkness as well as under photorespiratory or non-photorespiratory conditions. Extracts for studies on in vivo PEPC phosphorylation were prepared from barley leaf protoplasts by rapid filtration, fractionating the cell within less than 1 s. Measurements of in vitro PEPC activity were performed on samples quickly frozen in liquid nitrogen to break the cell and stop metabolism and thus preserve the in vivo activation state. The relative PEPC phosphorylation state increased upon illumination and decreased upon redarkening under photorespiratory and non-photorespiratory conditions. PEPC activity measured in the presence of malate (3 mM) under photorespiratory conditions showed the same response indicating that a light-induced increase in PEPC activity and decrease in malate sensitivity is caused by an increased phosphorylation level of the PEPC protein. PEPC activity was pH dependent. At the physiological cytosolic pH, activity was suboptimal, but most sensitive towards malate inhibition and glucose 6-phosphate stimulation. The presence of malate increased the sensitivity of PEPC activity towards pH changes. The response of PEPC activity to changing pH was not affected by changes in the activation state of the enzyme. The Km (phosphoenolpyruvate, PEP) is about 1 mM. Upon illumination the Km (PEP) decrease significantly. Vmax was unaffected by the light treatment. The presence of physiological concentrations of glucose 6-phosphate decreased Km (PEP) 5- to 10-fold and increased Vmax by about 35%. The effect of glucose 6-phosphate was strongest (up to 7-fold) at subsaturating PEP concentrations stimulating PEPC activity to nearly maximal rates. The results show that an increase in PEPC phosphorylation state causes an increase in PEPC activity as well as in substrate affinity leading to an increased production of OAA in the light.


Subject(s)
Hordeum/metabolism , Mitochondria/metabolism , Oxaloacetates/metabolism , Phosphoenolpyruvate Carboxylase/metabolism , Cytosol/metabolism , Hordeum/radiation effects , Hydrogen-Ion Concentration , Kinetics , Light , Phosphoenolpyruvate Carboxylase/chemistry , Phosphoenolpyruvate Carboxylase/radiation effects , Phosphorylation , Photosynthesis , Protoplasts/metabolism
14.
Biochim Biophys Acta ; 1289(3): 351-61, 1996 Apr 17.
Article in English | MEDLINE | ID: mdl-8620019

ABSTRACT

The regulation of the supply of oxaloacetate (OAA) for mitochondrial metabolism via phosphoenolpyruvate carboxylase (PEPC) by metabolites is studied in barley (Hordeum vulgare L.) leaf protoplasts in light or darkness as well as under photorespiratory or non-photorespiratory conditions. Measurements on PEPC activity were performed on samples quickly frozen in liquid nitrogen to break the cell and stop metabolism and thus preserve the in vivo activation state. Glycine, serine, pyruvate, acetyl-CoA, glycolate, fructose 1,6-bisphosphate, fructose 2,6-bisphosphate and ADP had no significant effect on PEPC activity. Malate, aspartate and glutamate were strong inhibitors of PEPC activity decreasing the activity more in light versus darkness. However, at the physiological cytosolic concentration of these metabolites under the respective conditions, inhibition of PEPC activity was about the same with the exception of aspartate which inhibits more under non-photorespiratory than under photorespiratory conditions. 2-Oxoglutarate and glyoxylate decreased PEPC activity by 20 to 40% in the range of its physiological cytosolic concentration. Inhibition by physiological cytosolic concentrations of glutamine was limited. Glucose 6-phosphate, fructose 6-phosphate, 3-phosphoglycerate, dihydroxyacetonphosphate and P(i) stimulated PEPC activity significantly in their physiological cytosolic concentration range. Physiological cytosolic concentrations of glucose 6-phosphate and fructose 6-phosphate activated PEPC activity to about the same extent under all conditions applied, while 3-phosphoglycerate and dihydroxyacetonphosphate stimulating stronger under non-photorespiratory versus photorespiratory conditions. Moreover, dihydroxyacetonphosphate stimulated PEPC activity more in light versus darkness under non-photorespiratory conditions. P(i) activation of PEPC activity decreases in light versus darkness under non-photorespiratory conditions. Stimulation of PEPC activity by citrate in its physiological concentration range is limited. Glucose 1-phosphate and AMP activated PEPC activity only at concentrations higher than their physiological levels in the cytosol. Determinations of PEPC activity in the presence of different malate/glucose 6-phosphate ratios revealed that glucose 6-phosphate totally relieved the inhibitory effect of malate. The regulatory properties of PEPC activity will be discussed in relation to its functions in C3 plants.


Subject(s)
Hordeum/metabolism , Mitochondria/metabolism , Oxaloacetates/metabolism , Phosphoenolpyruvate Carboxylase/metabolism , Amino Acids/pharmacology , Carbohydrates/pharmacology , Enzyme Activation/drug effects , Glycolysis , Hordeum/drug effects , Hordeum/radiation effects , Light , Photosynthesis , Protoplasts/metabolism
15.
Plant Physiol ; 109(2): 697-706, 1995 Oct.
Article in English | MEDLINE | ID: mdl-12228623

ABSTRACT

The effect of long-term (months) exposure to low temperature (5[deg]C) on growth, photosynthesis, and carbon metabolism was studied in spring and winter cultivars of wheat (Triticum aestivum) and rape (Brassica napus). Cold-grown winter rape and winter wheat maintained higher net assimilation rates and higher in situ CO2 exchange rates than the respective cold-grown spring cultivars. In particular, the relative growth rate of spring rape declined over time at low temperature, and this was associated with a 92% loss in in situ CO2 exchange rates. Associated with the high photosynthetic rates of cold-grown winter cultivars was a 2-fold increase per unit of protein in both stromal and cytosolic fructose-1,6-bisphosphatase activity and a 1.5- to 2-fold increase in sucrose-phosphate synthase activity. Neither spring cultivar increased enzyme activity on a per unit of protein basis. We suggest that the recovery of photosynthetic capacity at low temperature and the regulation of enzymatic activity represent acclimation in winter cultivars. This allow these overwintering herbaceous annuals to maximize the production of sugars with possible cryoprotective function and to accumulate sufficient carbohydrate storage reserve to support basal metabolism and regrowth in the spring.

16.
J Bioenerg Biomembr ; 27(4): 415-21, 1995 Aug.
Article in English | MEDLINE | ID: mdl-8595977

ABSTRACT

Mitochondria fulfill important functions in photosynthetic cells not only in darkness but also in light. Mitochondrial oxidative phosphorylation is probably the main mechanism to supply ATP for extrachloroplastic functions in both conditions. Furthermore, during photosynthesis mitochondrial electron transport is important for regulation of the redox balance in the cell. This makes mitochondrial function an integral part of a flexible metabolic system in the photosynthetic cell. This flexibility is probably very important in order to allow the metabolism to override disturbances caused by the changing environment which plants are adapted to.


Subject(s)
Energy Metabolism , Mitochondria/metabolism , Photosynthesis , Plants/metabolism , Chloroplasts/metabolism , Homeostasis , Light , Models, Biological , Oxidation-Reduction , Oxidative Phosphorylation
17.
Plant Physiol ; 107(2): 479-483, 1995 Feb.
Article in English | MEDLINE | ID: mdl-12228374

ABSTRACT

Mitochondria were isolated from autotrophically grown Chlamydomonas reinhardtii cell-wall-less mutant CW 92. The cells were broken by vortexing with glass beads, and the mitochondria were collected by differential centrifugation and purified on a Percoll gradient. The isolated mitochondria oxidized malate, pyruvate, succinate, NADH, and [alpha]-ketoglutarate. Respiratory control was obtained with malate (2.0) and pyruvate (2.2) but not with the other substrates. From experiments with KCN and salicylhydroxamic acid, it was estimated that the capacity of the cytochrome pathway was at least 100 nmol O2 mg-1 protein min-1 and the capacity of the alternative oxidase was at least 50 nmol O2 mg-1 protein min-1. A low sensitivity to oligomycin indicates some difference in the properties of the mitochondrial ATPase from Chlamydomonas as compared to higher plants.

18.
Plant Physiol ; 106(4): 1633-1638, 1994 Dec.
Article in English | MEDLINE | ID: mdl-12232437

ABSTRACT

Protoplasts from barley (Hordeum vulgare), pea (Pisum sativum), wheat (Triticum aestivum), and spinach (Spinacia oleracea) leaves were fractionated into chloroplast- and mitochondrion-enriched fractions. Pyruvate dehydrogenase complex capacities in mitochondria (mtPDC) and chloroplasts (cpPDC) were measured in appropriate fractions under conditions optimal for each isozyme. The total cellular capacity of PDC was similar in barley and pea but about 50% lower in wheat and spinach. In pea a distribution of 87% mtPDC and 13% cpPDC was found on a cellular basis. In barley, wheat, and spinach the subcellular distribution was the opposite, with about 15% mtPDC and 85% cpPDC. cpPDC activity was constant at about 0.1 nmol cell-1 h-1 in cells from different regions along the developing barley leaf and showed no correlation with developmental patterns of photosynthetic parameters, such as increasing Chl and NADP-glyceraldehyde-3-phosphate dehydrogenase activity. Similarly, the capacity of the mitochondrial isoform did not change during barley leaf development and had a developmental pattern similar to that of citrate synthase and fumarase. Differences in subcellular distribution of PDCs in barley and pea are proposed to be due to differences in regulation, not to changes in isozyme proportions during leaf development or to species-specific differences in phosphorylation state of mtPDC after organelle separation.

19.
Plant Physiol ; 106(3): 983-990, 1994 Nov.
Article in English | MEDLINE | ID: mdl-12232378

ABSTRACT

The effect of a short-term (hours) shift to low temperature (5[deg]C) and long-term (months) cold hardening on photosynthesis and carbon metabolism was studied in winter rye (Secale cereale L. cv Musketeer). Cold-hardened plants grown at 5[deg]C exhibited 25% higher in situ CO2 exchange rates than nonhardened plants grown at 24[deg]C. Cold-hardened plants maintained these high rates throughout the day, in contrast to nonhardened plants, which showed a gradual decline in photosynthesis after 3 h. Associated with the increase in photosynthetic capacity following cold hardening was an increase in ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose phosphate synthase activity and 3- to 4-fold increases in the pools of associated metabolites. Leaves of nonhardened plants shifted overnight to 5[deg]C required 9 h in the light at 5[deg]C before maximum rates of photosynthesis were reached. The gradual increase in photosynthesis in leaves shifted to 5[deg]C was correlated with a sharp decline in the 3-phosphoglycerate/triose phosphate ratio and by an increase in the ribulose bisphosphate/3-phosphoglycerate ratio, indicating the gradual easing of aninorganic phosphate-mediated feedback inhibition on photo-synthesis. We suggest that the strong recovery of photosynthesis in winter rye following cold hardening indicates that the buildup of photosynthetic enzymes, as well as those involved in sucrose synthesis, is an adaptive response that enables these plants to maximize the production of sugars that have both cryoprotective and storage functions that are critical to the performance of these cultivars during over-wintering.

20.
Plant Physiol ; 102(3): 947-955, 1993 Jul.
Article in English | MEDLINE | ID: mdl-12231880

ABSTRACT

An oligomycin concentration that specifically inhibits oxidative phosphorylation was added to isolated barley (Hordeum vulgare L.) leaf protoplasts at various irradiances and carbon dioxide concentrations. At saturating as well as low light intensities, photosynthetic oxygen evolution was decreased as a result of the oligomycin treatment, whereas no effect was observed at intermediate light intensities. This was the same for photorespiratory and nonphotorespiratory conditions. These results were confirmed by measurements of fluorescence quenching under the same conditions. Metabolite analysis in the presence of oligomycin revealed a drastic decrease in the mitochondrial and cytosolic ATP/ADP ratios, whereas there was little or no effect on the chloroplastic ratio. Concomitantly, sucrose phosphate synthase activity was reduced. Under high irradiances, this inhibition of sucrose synthesis by oligomycin apparently caused a feedback inhibition on the Calvin cycle and the photosynthetic activity. Under low irradiances, a feedback regulation compensated, indicating that light was more limiting than the activity of regulative enzymes. Thus, the importance of mitochondrial respiratory activity might be different in different metabolic situations. At saturating light, the oxidation of excess photosynthetic redox equivalents is required to sustain a high rate of photosynthesis. At low light, the supply of ATP to the cytosol might be required to support biosynthetic reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...