Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 96(18): 7038-7046, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38575850

ABSTRACT

Laser-induced breakdown spectroscopy (LIBS) imaging continues to gain strength as an influential bioanalytical technique, showing intriguing potential in the field of clinical analysis. This is because hyperspectral LIBS imaging allows for rapid, comprehensive elemental analysis, covering elements from major to trace levels consistently year after year. In this study, we estimated the potential of a multivariate spectral data treatment approach based on a so-called convex envelope method to detect exotic elements (whether they are minor or in trace amounts) in biopsy tissues of patients with occupational exposure-related diseases. More precisely, we have developed an approach called Interesting Features Finder (IFF), which initially allowed us to identify unexpected elements without any preconceptions, considering only the set of spectra contained in a LIBS hyperspectral data cube. This task is, in fact, almost impossible with conventional chemometric tools, as it entails identifying a few exotic spectra among several hundred thousand others. Once this detection was performed, a second approach based on correlation was used to locate their distribution in the biopsies. Through this unique data analysis pipeline to processing massive LIBS spectroscopic data, it was possible to detect and locate exotic elements such as tin and rhodium in a patient's tissue section, ultimately leading to a possible reclassification of their lung condition as an occupational disease. This review will thus demonstrate the potential of this new diagnostic tool based on LIBS imaging in addressing the shortcomings of approaches developed thus far. The proposed data processing approach naturally transcends this specific framework and can be leveraged across various domains of analytical chemistry, where the detection of rare events is concealed within extensive data sets.


Subject(s)
Lung Diseases , Humans , Biopsy , Lung Diseases/diagnosis , Lung Diseases/pathology , Occupational Diseases/diagnosis , Occupational Diseases/pathology , Lasers , Spectrum Analysis/methods , Lung/pathology , Lung/chemistry , Lung/diagnostic imaging
3.
J Neurosci Methods ; 379: 109676, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35850297

ABSTRACT

Biological tissues contain various metals and metalloids ions with central role in the regulation of several pathophysiological functions. In parallel, the development and the evaluation of novel nanocompounds for biomedicine require the monitoring of their biodistribution in tissues of interest. Therefore, researchers need to use reliable and accessible techniques to detect and quantify major and trace elements in space-resolved manner. In this communication, we report how Laser-Induced Breakdown Spectroscopy (LIBS) can be used to image the distribution of chemical elements in brain tissues.


Subject(s)
Lasers , Spectrum Analysis/methods , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...