Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 11(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37624166

ABSTRACT

Insect pollinators provide an important ecosystem service that supports global biodiversity and environmental health. The study investigates the effects of the environmental matrix on six oxidative stress biomarkers in the honey bee Apis mellifera. Thirty-five apiaries located in urban, forested, and agricultural areas in Central Italy were sampled during the summer season. Enzyme activities in forager bees were analyzed using an artificial neural network, allowing the identification and representation of the apiary patterns in a Self-Organizing Map. The SOM nodes were correlated with the environmental parameters and tissue levels of eight heavy metals. The results indicated that the apiaries were not clustered according to their spatial distribution. Superoxide dismutase expressed a positive correlation with Cr and Mn concentrations; catalase with Zn, Mn, Fe, and daily maximum air temperature; glutathione S-transferase with Cr, Fe, and daily maximal air temperature; and glutathione reductase showed a negative correlation to Ni and Fe exposure. This study highlights the importance of exploring how environmental stressors affect these insects and the role of oxidative stress biomarkers. Artificial neural networks proved to be a powerful approach to untangle the complex relationships between the environment and oxidative stress biomarkers in honey bees. The application of SOM modeling offers a valuable means of assessing the potential effects of environmental pressures on honey bee populations.

2.
Environ Sci Pollut Res Int ; 27(9): 9637-9645, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31925681

ABSTRACT

The use antimicrobials for therapeutic and metaphylactic purpose in humans and agriculture exerts selective pressure on animal and environmental microbiota resulting in the survival and spread of antimicrobial resistance genes among bacteria and subsequent development of resistance in bacteria. Previous studies have shown that honey bees' microbiota (Apis mellifera) can accumulate antimicrobial resistance genes in their microbiome and act as collectors and disseminators of resistance genes. The aim of this study was to investigate to what extent honey bees act as reservoir of select antimicrobial resistance genes. This study was conducted on 35 groups of bees. Bees were collected from 35 sites in Umbria, Italy. PCR was used to screen pooled ground bees' specimens for genes that code for resistance against antimicrobials that are commonly used in humans and in veterinary medicine including aminoglycosides (aph), beta-lactams (blaZ), tetracycline (tetM) and sulphonamides (sul1 and sul2). Twenty-four samples out of 35 (68.57%) were positive for at least one antimicrobial resistance gene. Two samples were positive for the aph, 5.71%; eight for blaZ, 22.86%; three for tetM, 8.57%; ten for sul1, 28.57% and eighteen for sul2, 51.43%. Positivity to more than one antimicrobial resistance gene was observed in nine samples, 25.71%. The multivariate analysis identified "presence of farms nearby" as the factor most closely related to PCR positivity. Honey bees (Apis mellifera) from Umbria, Italy, carry antimicrobial resistance genes and can be used as indicators of the presence of resistance genes in the environment.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Animals , Bees , Cross-Sectional Studies , Italy , Risk Factors
3.
Front Plant Sci ; 10: 867, 2019.
Article in English | MEDLINE | ID: mdl-31333704

ABSTRACT

Olive is considered as a moderately salt tolerant plant, however, tolerance to salt appears to be cultivar-dependent and genotypic responses have not been extensively investigated. In this work, saline stress was induced in four olive cultivars: Arbequina, Koroneiki, Royal de Cazorla and Fadak 86. The plants were grown in 2.5 l pots containing 60% peat and 40% of pumice mixture for 240 days and were irrigated three times a week with half-strength Hoagland solution containing 0, 100 and 200 mM NaCl. The effects of salt stress on growth, physiological and biochemical parameters were determined after 180, 210, and 240 days of treatment. Saline stress response was evaluated in leaves by measuring the activity of GSH and CAT enzymatic activity, as well as proline levels, gas exchanges, leaves relative water content and chlorophyll content, and proline content. All the studied cultivars showed a decrease in Net Photosynthesis, leaves chlorophyll content and plant growth (mainly leaves dry weight) and an increase in the activity of GSH and CAT. In addition, the reduction of proline content in leaf tissues, induced an alteration of osmotic regulation. Among the studied cultivars Royal and Koroneiki better counteracting the effects of saline stress thanks to a higher activity of two antioxidant enzymes.

4.
Plant Physiol Biochem ; 84: 261-270, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25306529

ABSTRACT

It is uncertain whether the enzymes pyruvate orthophosphate dikinase (PPDK) or isocitrate lyase (ICL) are present in the pericarp of grape, in which they could function in gluconeogenesis. The occurrence of these and other enzymes was investigated in the pericarp of three cultivars of grape (Vitis vinifera L.). In particular, the abundance of the enzymes aldolase, glutamine synthase (GS), acid invertase, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), phosphoenolpyruvate carboxylase (PEPC), PPDK and ICL were determined during the development of the pericarp of the cultivars Cabernet Sauvignon, Chardonnay and Zibibbo. PPDK and ICL were not detected at any stage of development. Each of the other enzymes showed different changes in abundance during development. However, for a given enzyme its changes in abundance were similar in each cultivar. In the ripe pericarp of Cabernet Sauvignon, PEPC, cytosolic GS and aldolase were equally distributed between the vasculature and parenchyma cells of the flesh and skin. The absence or very low abundance of PPDK provides strong evidence that any gluconeogenesis from malate utilises phosphoenolpyruvate carboxykinase (PEPCK). The absence or very low abundance of ICL in the pericarp precludes any gluconeogenesis from ethanol.


Subject(s)
Vitis/enzymology , Vitis/metabolism , Fruit/enzymology , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Gluconeogenesis/genetics , Gluconeogenesis/physiology , Phosphoenolpyruvate Carboxykinase (ATP) , Phosphoenolpyruvate Carboxylase/genetics , Phosphoenolpyruvate Carboxylase/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Vitis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...