Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 20(5): e1011903, 2024 May.
Article in English | MEDLINE | ID: mdl-38805551

ABSTRACT

The common liver fluke (Fasciola hepatica) causes the disease fasciolosis, which results in considerable losses within the global agri-food industry. There is a shortfall in the drugs that are effective against both the adult and juvenile life stages within the mammalian host, such that new drug targets are needed. Over the last decade the stem cells of parasitic flatworms have emerged as reservoirs of putative novel targets due to their role in development and homeostasis, including at host-parasite interfaces. Here, we investigate and characterise the proliferating cells that underpin development in F. hepatica. We provide evidence that these cells are capable of self-renewal, differentiation, and are sensitive to ionising radiation- all attributes of neoblasts in other flatworms. Changes in cell proliferation were also noted during the early stages of in vitro juvenile growth/development (around four to seven days post excystment), which coincided with a marked reduction in the nuclear area of proliferating cells. Furthermore, we generated transcriptomes from worms following irradiation-based ablation of neoblasts, identifying 124 significantly downregulated transcripts, including known stem cell markers such as fgfrA and plk1. Sixty-eight of these had homologues associated with neoblast-like cells in Schistosoma mansoni. Finally, RNA interference mediated knockdown of histone h2b (a marker of proliferating cells), ablated neoblast-like cells and impaired worm development in vitro. In summary, this work demonstrates that the proliferating cells of F. hepatica are equivalent to neoblasts of other flatworm species and demonstrate that they may serve as attractive targets for novel anthelmintics.


Subject(s)
Cell Proliferation , Fasciola hepatica , Fascioliasis , Stem Cells , Animals , Fascioliasis/parasitology , Cell Differentiation
2.
Vet Rec ; 192(1): e2341, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36352759

ABSTRACT

BACKGROUND: Toxocarosis is a globally distributed zoonotic disease, but sources of infection are not well documented over large geographical scales. To determine levels of environmental contamination, soil from 142 parks and recreational areas across the UK and Ireland was assessed for the presence of Toxocara. METHODS: Toxocara ova (eggs) were isolated from soil samples by sieving and flotation and then enumerated. Individual eggs were isolated and imaged, and a subset was characterised by species-specific PCR and Sanger sequencing. RESULTS: Characteristic Toxocara-type eggs were found in 86.6% of parks, with an average of 2.1 eggs per 50 g of topsoil. Representative eggs were confirmed as Toxocara canis by Sanger sequencing, with many eggs containing developed larvae, hence being viable and potentially infective. Positive samples were more common, and egg density was higher, in parks with greater perceived levels of dog fouling. LIMITATIONS: Samples were collected at a single timepoint and with limited spatial mapping within parks. Further study is needed to discern spatiotemporal differences within parks and recreational areas. CONCLUSION: Toxocara is widespread in soil in public parks, indicating a need for further efforts to reduce egg shedding from pet dogs. Standardised methods and large-scale surveys are required to evaluate risk factors for egg presence and the impact of interventions.


Subject(s)
Dog Diseases , Toxocariasis , Animals , Dogs , Toxocara , Soil , Ireland/epidemiology , Toxocariasis/epidemiology , United Kingdom/epidemiology , Parasite Egg Count/veterinary , Feces , Dog Diseases/epidemiology
3.
PLoS Negl Trop Dis ; 16(11): e0010854, 2022 11.
Article in English | MEDLINE | ID: mdl-36342907

ABSTRACT

Fasciola spp. liver flukes have significant impacts in veterinary and human medicine. The absence of a vaccine and increasing anthelmintic resistance threaten sustainable control and underscore the need for novel flukicides. Functional genomic approaches underpinned by in vitro culture of juvenile Fasciola hepatica facilitate control target validation in the most pathogenic life stage. Comparative transcriptomics of in vitro and in vivo maintained 21 day old F. hepatica finds that 86% of genes are expressed at similar levels across maintenance treatments suggesting commonality in core biological functioning within these juveniles. Phenotypic comparisons revealed higher cell proliferation and growth rates in the in vivo juveniles compared to their in vitro counterparts. These phenotypic differences were consistent with the upregulation of neoblast-like stem cell and cell-cycle associated genes in in vivo maintained worms. The more rapid growth/development of in vivo juveniles was further evidenced by a switch in cathepsin protease expression profiles, dominated by cathepsin B in in vitro juveniles and by cathepsin L in in vivo juveniles. Coincident with more rapid growth/development was the marked downregulation of both classical and peptidergic neuronal signalling components in in vivo maintained juveniles, supporting a role for the nervous system in regulating liver fluke growth and development. Differences in the miRNA complements of in vivo and in vitro juveniles identified 31 differentially expressed miRNAs, including fhe-let-7a-5p, fhe-mir-124-3p and miRNAs predicted to target Wnt-signalling, which supports a key role for miRNAs in driving the growth/developmental differences in the in vitro and in vivo maintained juvenile liver fluke. Widespread differences in the expression of neuronal genes in juvenile fluke grown in vitro and in vivo expose significant interplay between neuronal signalling and the rate of growth/development, encouraging consideration of neuronal targets in efforts to dysregulate growth/development for parasite control.


Subject(s)
Fasciola hepatica , Fascioliasis , MicroRNAs , Animals , Cell Proliferation , Fascioliasis/parasitology , MicroRNAs/genetics , Nervous System , Transcriptome
4.
Trends Parasitol ; 34(3): 184-196, 2018 03.
Article in English | MEDLINE | ID: mdl-29269027

ABSTRACT

The majority of anthelmintics dysregulate neuromuscular function, a fact most prominent for drugs against nematode parasites. In contrast to the strong knowledge base for nematode neurobiology, resource and tool deficits have prevented similar advances in flatworm parasites since those driven by bioimaging, immunocytochemistry, and neuropeptide biochemistry 20-30 years ago. However, recent developments are encouraging a renaissance in liver fluke neurobiology that can now support flukicide discovery. Emerging data promote neuromuscular signalling components, and especially G protein-coupled receptors (GPCRs), as next-generation targets. Here, we summarise these data and expose some of the new opportunities to accelerate progress towards GPCR-targeted flukicides for Fasciola hepatica.


Subject(s)
Anthelmintics/therapeutic use , Drug Discovery/trends , Fascioliasis/drug therapy , Research/trends , Animals , Fasciola hepatica/physiology , Receptors, G-Protein-Coupled/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...