Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 14(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38785932

ABSTRACT

Augmenting the natural melanocortin pathway in mouse eyes with uveitis or diabetes protects the retinas from degeneration. The retinal cells are protected from oxidative and apoptotic signals of death. Therefore, we investigated the effects of a therapeutic application of the melanocortin alpha-melanocyte-stimulating hormone (α-MSH) on an ischemia and reperfusion (I/R) model of retinal degenerative disease. Eyes were subjected to an I/R procedure and were treated with α-MSH. Retinal sections were histopathologically scored. Also, the retinal sections were immunostained for viable ganglion cells, activated Muller cells, microglial cells, and apoptosis. The I/R caused retinal deformation and ganglion cell loss that was significantly reduced in I/R eyes treated with α-MSH. While α-MSH treatment marginally reduced the number of GFAP-positive Muller cells, it significantly suppressed the density of Iba1-positive microglial cells in the I/R retinas. Within one hour after I/R, there was apoptosis in the ganglion cell layer, and by 48 h, there was apoptosis in all layers of the neuroretina. The α-MSH treatment significantly reduced and delayed the onset of apoptosis in the retinas of I/R eyes. The results demonstrate that therapeutically augmenting the melanocortin pathways preserves retinal structure and cell survival in eyes with progressive neuroretinal degenerative disease.


Subject(s)
Apoptosis , Homeostasis , Reperfusion Injury , Retina , Retinal Ganglion Cells , alpha-MSH , Animals , alpha-MSH/pharmacology , alpha-MSH/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Mice , Apoptosis/drug effects , Retina/metabolism , Retina/drug effects , Retina/pathology , Homeostasis/drug effects , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Mice, Inbred C57BL , Microglia/metabolism , Microglia/drug effects , Male , Ependymoglial Cells/metabolism , Ependymoglial Cells/drug effects , Ependymoglial Cells/pathology , Disease Models, Animal , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Degeneration/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...