Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 14(12): 1692-1699, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38116445

ABSTRACT

We have developed a chiral route toward the synthesis of muscarinic M4 agonists that was enabled by the biocatalytic synthesis of the key spirocyclic diamine building blocks 10 and 12. Using these bifunctional compounds we were able to optimize a synthetic sequence toward a collection of advanced intermediates for further elaboration. These advanced intermediates were then used as starting points for early medicinal chemistry and the identification of selective M1/M4 agonists.

2.
ACS Med Chem Lett ; 13(11): 1691-1698, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36385931

ABSTRACT

Drug discovery and development has experienced an incredible paradigm shift in the past two decades. What once was considered a predominant R&D landscape of small molecules within a prescribed properties and mechanism space now includes an innovative wave of new chemical modalities. Scientists in the pharmaceutical industry can now strategize across a variety of modalities to find the best option to modulate a given target and provide treatment for a specific disease. We have witnessed a remarkable change not only in molecular design but also in creative approaches to drug delivery that have enabled advancement of novel modalities to clinical studies. In this Microperspective, we evaluate the critical differences between traditional small molecules and beyond rule of 5 compounds, peptides, oligonucleotides, and biologics for advancing into development, particularly their pharmacokinetic profiles and drug delivery strategies.

3.
ACS Med Chem Lett ; 11(3): 228-231, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32184948

ABSTRACT

The classical toolbox for drug discovery is continuously expanding beyond traditional small molecules. New chemical modalities including RNA therapeutics, protein degraders, cyclopeptides, antibody drug conjugates, and gene therapy have matured, demonstrating clinical success and are now considered early in target appraisal. In this Viewpoint, we highlight recent progress in the field.

4.
J Med Chem ; 62(19): 8711-8732, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31532644

ABSTRACT

Clinical development of catechol-based orthosteric agonists of the dopamine D1 receptor has thus far been unsuccessful due to multiple challenges. To address these issues, we identified LY3154207 (3) as a novel, potent, and subtype selective human D1 positive allosteric modulator (PAM) with minimal allosteric agonist activity. Conformational studies showed LY3154207 adopts an unusual boat conformation, and a binding pose with the human D1 receptor was proposed based on this observation. In contrast to orthosteric agonists, LY3154207 showed a distinct pharmacological profile without a bell-shaped dose-response relationship or tachyphylaxis in preclinical models. Identification of a crystalline form of free LY3154207 from the discovery lots was not successful. Instead, a novel cocrystal form with superior solubility was discovered and determined to be suitable for development. This cocrystal form was advanced to clinical development as a potential first-in-class D1 PAM and is now in phase 2 studies for Lewy body dementia.


Subject(s)
Isoquinolines/pharmacology , Receptors, Dopamine D1/agonists , Acetylcholine/metabolism , Administration, Oral , Allosteric Regulation/drug effects , Animals , Binding Sites , Crystallography, X-Ray , Cyclic AMP/metabolism , HEK293 Cells , Half-Life , Humans , Isoquinolines/chemistry , Isoquinolines/pharmacokinetics , Kidney/drug effects , Kidney/metabolism , Locomotion/drug effects , Mice , Molecular Conformation , Protein Isoforms/agonists , Protein Isoforms/metabolism , Rats , Receptors, Dopamine D1/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
5.
J Pharmacol Exp Ther ; 369(3): 345-363, 2019 06.
Article in English | MEDLINE | ID: mdl-30910921

ABSTRACT

Nonselective glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists are efficacious in chronic pain but have significant tolerability issues, likely arising from the ubiquitous expression of AMPA receptors in the central nervous system (CNS). Recently, LY3130481 has been shown to selectively block AMPA receptors coassembled with the auxiliary protein, transmembrane AMPA receptor regulatory protein (TARP) γ8, which is highly expressed in the hippocampus but also in pain pathways, including anterior cingulate (ACC) and somatosensory cortices and the spinal cord, suggesting that selective blockade of γ8/AMPA receptors may suppress nociceptive signaling with fewer CNS side effects. The potency of LY3130481 on recombinant γ8-containing AMPA receptors was modulated by coexpression with other TARPs; γ2 subunits affected activity more than γ3 subunits. Consistent with these findings, LY3130481 had decreasing potency on receptors from rat hippocampal, cortical, spinal cord, and cerebellar neurons that was replicated in tissue from human brain. LY3130481 partially suppressed, whereas the nonselective AMPA antagonist GYKI53784 completely blocked, AMPA receptor-dependent excitatory postsynaptic potentials in ACC and spinal neurons in vitro. Similarly, LY3130481 attenuated short-term synaptic plasticity in spinal sensory neurons in vivo in response to stimulation of peripheral afferents. LY3130481 also significantly reduced nocifensive behaviors after intraplantar formalin that was correlated with occupancy of CNS γ8-containing AMPA receptors. In addition, LY3130481 dose-dependently attenuated established gait impairment after joint damage and tactile allodynia after spinal nerve ligation, all in the absence of motor side effects. Collectively, these data demonstrate that LY3130481 can suppress excitatory synaptic transmission and plasticity in pain pathways containing γ8/AMPA receptors and significantly reduce nocifensive behaviors, suggesting a novel, effective, and safer therapy for chronic pain conditions.


Subject(s)
Calcium Channels/metabolism , Chronic Pain/drug therapy , Chronic Pain/metabolism , Molecular Targeted Therapy , Receptors, AMPA/metabolism , Animals , Benzothiazoles/pharmacology , Benzothiazoles/therapeutic use , Chronic Pain/physiopathology , Male , Neuronal Plasticity/drug effects , Nociception/drug effects , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Rats , Rats, Sprague-Dawley , Synaptic Transmission/drug effects , Tissue Distribution
6.
CNS Neurol Disord Drug Targets ; 16(10): 1099-1110, 2017.
Article in English | MEDLINE | ID: mdl-29090671

ABSTRACT

BACKGROUND & OBJECTIVE: 6-[(1S)-1-[1-[5-(2-hydroxyethoxy)-2-pyridyl]pyrazol-3-yl]ethyl]- 3H-1,3-benzothiazol-2-one (LY3130481 or CERC-611) is a selective antagonist of AMPA receptors containing transmembrane AMPA receptor regulatory protein (TARP) γ-8 that is under development for epilepsy. The present study provided a broad inquiry into its anticonvulsant properties. LY3130481 was anticonvulsant in multiple acute seizure provocation models in mice and rats. In addition, LY3130481 was effective against absence seizures in the GAERS genetic model and in the Frings mouse model. Likewise, LY3130481 attenuated convulsions in mice and rats with long-term induction of seizures (e.g., corneal, pentylenetetrazole, hippocampal, and amygdala kindled seizures). In slices of epileptic human cortex, LY3130481 significantly decreased neuronal firing frequencies. LY3130481 displaced from rat brain a radioligand specific for AMPA receptors associated with TARP γ-8 whereas non-TARP-selective molecules did not. Binding was also observed in hippocampus freshly transected from a patient. RESULTS & CONCLUSION: Taken as a whole, the findings reported here establish the broad anticonvulsant efficacy of LY3130481 indicating that blockade of AMPA receptors associated with TARP γ-8 is sufficient for these protective effects.


Subject(s)
Benzothiazoles/pharmacology , Calcium Channels/metabolism , Pyrazoles/pharmacology , Receptors, AMPA/antagonists & inhibitors , Seizures/prevention & control , Animals , Anticonvulsants/pharmacology , Cerebral Cortex/physiology , Disease Models, Animal , Female , Humans , Male , Mice , Neurons/physiology , Radioligand Assay , Rats
7.
Neuropharmacology ; 126: 257-270, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28757050

ABSTRACT

6-[(1S)-1-[1-[5-(2-hydroxyethoxy)-2-pyridyl]pyrazol-3-yl]ethyl]-3H-1,3-benzothiazol-2-one (LY3130481 or CERC-611) is a selective antagonist of AMPA receptors containing transmembrane AMPA receptor regulatory protein (TARP) γ-8. This molecule has been characterized as a potent and efficacious anticonvulsant in an array of acute and chronic epilepsy models in rodents. The present set of experiments was designed to assess the effects of LY3130481 on the electroencephelogram (EEG), cognitive function, and neurochemical outflow. LY3130481 disrupted food-maintained responding in rats and spontaneous alternation in a Y-maze in mice. In rat fear conditioning, LY3130481 caused a deficit in trace (hippocampal-dependent), but not in delay fear conditioning. Although these effects on cognitive performances were observed, the known cognitive-impairing anticonvulsant, topiramate, did not always produce deficits under these assay conditions. LY3130481 produced modest increases in wake times in rats. In addition, LY3130481 was able to attenuate some impairing effects of standard antiepileptic drugs. The motor-impairing effects of the lacosamide were attenuated by LY3130481 as was the decrease in non-rapid-eye movement sleep induced by carbamazepine. Evaluation of the effect of LY3130481 on neurotransmitter and metabolite efflux in the rat medial prefrontal cortex, using in vivo microdialysis, revealed significant increases in the pro-cognitive and wake-promoting neurotransmitters, histamine and acetylcholine, as well as in serotonin, telemethylhistamine, 5-HIAA, HVA and MHPG. LY3130481 thus presents a novel behavioral profile that will have to be evaluated in patients to fully appreciate its implications for therapeutics. LY3130481 is currently under clinical development as CERC-611 as an antiepileptic.


Subject(s)
Anticonvulsants/administration & dosage , Benzothiazoles/administration & dosage , Calcium Channels/physiology , Cognition/drug effects , Prefrontal Cortex/drug effects , Pyrazoles/administration & dosage , Acetylcholine/metabolism , Animals , Behavior, Animal/drug effects , Conditioning, Classical/drug effects , Electroencephalography , Fear/drug effects , Fructose/administration & dosage , Fructose/analogs & derivatives , Histamine/metabolism , Male , Maze Learning/drug effects , Nitriles , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiology , Pyridones/administration & dosage , Rats, Sprague-Dawley , Rats, Wistar , Serotonin/metabolism , Sleep Stages/drug effects , Topiramate
8.
ACS Chem Neurosci ; 8(12): 2631-2647, 2017 12 20.
Article in English | MEDLINE | ID: mdl-28825787

ABSTRACT

The forebrain specific AMPA receptor antagonist, LY3130481/CERC-611, which selectively antagonizes the AMPA receptors associated with TARP γ-8, an auxiliary subunit enriched in the forebrain, has potent antiepileptic activities without motor side effects. We designated the compounds with such activities as γ-8 TARP dependent AMPA receptor antagonists (γ-8 TDAAs). In this work, we further investigated the mechanisms of action using a radiolabeled γ-8 TDAA and ternary structural modeling with mutational validations to characterize the LY3130481 binding to γ-8. The radioligand binding to the cells heterologously expressing GluA1 and/or γ-8 revealed that γ-8 TDAAs binds to γ-8 alone without AMPA receptors. Homology modeling of γ-8, based on the crystal structures of a distant TARP homologue, murine claudin 19, in conjunction with knowledge of two γ-8 residues previously identified as critical for the LY3130481 TARP-dependent selectivity provided the basis for a binding mode prediction. This allowed further rational mutational studies for characterization of the structural determinants in TARP γ-8 for LY3130481 activities, both thermodynamically as well as kinetically.


Subject(s)
Benzothiazoles/chemistry , Molecular Docking Simulation , Neurons/chemistry , Pyrazoles/chemistry , Receptors, AMPA/antagonists & inhibitors , Receptors, AMPA/ultrastructure , Animals , Binding Sites , Hippocampus/chemistry , Male , Mice , Models, Biological , Models, Chemical , Protein Binding , Protein Conformation , Structure-Activity Relationship
9.
Nat Med ; 22(12): 1496-1501, 2016 12.
Article in English | MEDLINE | ID: mdl-27820603

ABSTRACT

Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission, and their antagonists are antiepileptic. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage.


Subject(s)
Anticonvulsants/pharmacology , Benzothiazoles/pharmacology , Cerebellum/drug effects , Epilepsy/drug therapy , Prosencephalon/drug effects , Pyrazoles/pharmacology , Pyridones/pharmacology , Receptors, AMPA/antagonists & inhibitors , Animals , Anticonvulsants/adverse effects , Calcium Channels/metabolism , Cerebellum/metabolism , Convulsants/toxicity , Disease Models, Animal , Dizziness/chemically induced , Epilepsy/chemically induced , Mice , Nitriles , Pentylenetetrazole/toxicity , Prosencephalon/metabolism , Pyridones/adverse effects , Rats , Receptors, AMPA/metabolism , Seizures/chemically induced , Seizures/drug therapy
11.
J Neurochem ; 138(3): 384-96, 2016 08.
Article in English | MEDLINE | ID: mdl-27216696

ABSTRACT

Disruption in the expression and function of synaptic proteins, and ion channels in particular, is critical in the pathophysiology of human neuropsychiatric and neurodegenerative diseases. However, very little is known regarding the functional and pharmacological properties of native synaptic human ion channels, and their potential changes in pathological conditions. Recently, an electrophysiological technique has been enabled for studying the functional and pharmacological properties of ion channels present in crude membrane preparation obtained from post-mortem frozen brains. We here extend these studies by showing that human synaptic ion channels also can be studied in this way. Synaptosomes purified from different regions of rodent and human brain (control and Alzheimer's) were characterized biochemically for enrichment of synaptic proteins, and expression of ion channel subunits. The same synaptosomes were also reconstituted in Xenopus oocytes, in which the functional and pharmacological properties of the native synaptic ion channels were characterized using the voltage clamp technique. We show that we can detect GABA, (RS)-α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and NMDA receptors, and modulate them pharmacologically with selective agonists, antagonists, and allosteric modulators. Furthermore, changes in ion channel expression and function were detected in synaptic membranes from Alzheimer's brains. Our present results demonstrate the possibility to investigate synaptic ion channels from healthy and pathological brains. This method of synaptosomes preparation and injection into oocytes is a significant improvement over the earlier method. It opens the way to directly testing, on native ion channels, the effects of novel drugs aimed at modulating important classes of synaptic targets. Disruption in the expression and function of synaptic ion channels is critical in the pathophysiology of human neurodegenerative diseases. We here show that synaptosomes purified from rodent and human frozen brain (control and Alzheimer disease) can be studied both biochemically and functionally. This method opens the way to directly testing the effects of novel drugs on native ion channels.


Subject(s)
Brain/metabolism , Ion Channels/metabolism , Oocytes/metabolism , Synaptosomes/metabolism , Animals , Cell Membrane/drug effects , Cell Membrane/physiology , Electrophysiological Phenomena/drug effects , Electrophysiological Phenomena/physiology , Female , Humans , Patch-Clamp Techniques/methods , Rats, Wistar , Receptors, GABA-A/metabolism , Xenopus laevis , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/pharmacology
12.
J Med Chem ; 59(10): 4753-68, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27067148

ABSTRACT

Transmembrane AMPA receptor regulatory proteins (TARPs) are a family of scaffolding proteins that regulate AMPA receptor trafficking and function. TARP γ-8 is one member of this family and is highly expressed within the hippocampus relative to the cerebellum. A selective TARP γ-8-dependent AMPA receptor antagonist (TDAA) is an innovative approach to modulate AMPA receptors in specific brain regions to potentially increase the therapeutic index relative to known non-TARP-dependent AMPA antagonists. We describe here, for the first time, the discovery of a noncompetitive AMPA receptor antagonist that is dependent on the presence of TARP γ-8. Three major iteration cycles were employed to improve upon potency, CYP1A2-dependent challenges, and in vivo clearance. An optimized molecule, compound (-)-25 (LY3130481), was fully protective against pentylenetetrazole-induced convulsions in rats without the motor impairment associated with non-TARP-dependent AMPA receptor antagonists. Compound (-)-25 could be utilized to provide proof of concept for antiepileptic efficacy with reduced motor side effects in patients.


Subject(s)
Calcium Channels/metabolism , Drug Discovery , Receptors, AMPA/antagonists & inhibitors , High-Throughput Screening Assays , Humans , Molecular Docking Simulation , Molecular Structure , Receptors, AMPA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...