Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2864, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580657

ABSTRACT

Global climate patterns fundamentally shape the distribution of species and ecosystems. For example, Bergmann's rule predicts that homeothermic animals, including birds and mammals, inhabiting cooler climates are generally larger than close relatives from warmer climates. The modern world, however, lacks the comparative data needed to evaluate such macroecological rules rigorously. Here, we test for Bergmann's rule in Mesozoic dinosaurs and mammaliaforms that radiated within relatively temperate global climate regimes. We develop a phylogenetic model that accounts for biases in the fossil record and allows for variable evolutionary dispersal rates. Our analysis also includes new fossil data from the extreme high-latitude Late Cretaceous Arctic Prince Creek Formation. We find no evidence for Bergmann's rule in Mesozoic dinosaurs or mammaliaforms, the ancestors of extant homeothermic birds and mammals. When our model is applied to thousands of extant dinosaur (bird) and mammal species, we find that body size evolution remains independent of latitude. A modest temperature effect is found in extant, but not in Mesozoic, birds, suggesting that body size evolution in modern birds was influenced by Bergmann's rule during Cenozoic climatic change. Our study provides a general approach for studying macroecological rules, highlighting the fossil record's power to address longstanding ecological principles.


Subject(s)
Dinosaurs , Animals , Phylogeny , Ecosystem , Models, Biological , Body Size , Mammals , Biological Evolution
2.
Proc Biol Sci ; 291(2021): 20240235, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38654650

ABSTRACT

Terror birds (Aves, Phorusrhacidae) were large flightless apex predators in South America during the Cenozoic. Here, we estimate a new phylogeny for phorusrhacids using Bayesian inference. We demonstrate phylogenetic evidence for a monophyletic Patagornithinae and find significant support for a distinct crown group associated with the quintessential 'terror bird' characteristics. We use this phylogeny to analyse the evolution of body size and cursoriality. Our results reveal that size overlap was rare between co-occurring subfamilies, supporting the hypothesis that these traits were important for niche partitioning. We observe that gigantism evolved in a single clade, containing Phorusrhacinae and Physornithinae. The members of this lineage were consistently larger than all other phorusrhacids. Phorusrhacinae emerged following the extinction of Physornithinae, suggesting the ecological succession of the apex predator niche. The first known phorusrhacine, Phorusrhacos longissimus, was gigantic but significantly smaller and more cursorial than any physornithine. These traits likely evolved in response to the expansion of open environments. Following the Santacrucian SALMA, phorusrhacines increased in size, further converging on the morphology of Physornithinae. These findings suggest that the evolution and displacement of body size drove terror bird niche partitioning and competitive exclusion controlled phorusrhacid diversity.


Subject(s)
Biological Evolution , Body Size , Phylogeny , Animals , Passeriformes/physiology , Bayes Theorem , South America , Birds/physiology
3.
Proc Biol Sci ; 291(2015): 20231713, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38229513

ABSTRACT

Teeth evolved early in vertebrate evolution, and their morphology reflects important specializations in diet and ecology among species. The toothless jaws (edentulism) in extant birds likely coevolved with beak keratin, which functionally replaced teeth. However, extinct dinosaurs lost teeth multiple times independently and exhibited great variation in toothrow distribution and rhamphotheca-like keratin structures. Here, we use rostral jawbone surface texture as a proxy for rostral keratin covering and phylogenetic comparative models to test for the influence of rostral keratin on toothrow distribution in Mesozoic dinosaurs. We find that the evolution of rostral keratin covering explains partial toothrow reduction but not jaw toothlessness. Toothrow reduction preceded the evolution of rostral keratin cover in theropods. Non-theropod dinosaurs evolved continuous toothrows despite evolving rostral keratin covers (e.g. some ornithischians and sauropodomorphs). We also show that rostral keratin covers did not significantly increase the evolutionary rate of tooth loss, which further delineates the antagonistic relationship between these structures. Our results suggest that the evolution of rostral keratin had a limited effect on suppressing tooth development. Independent changes in jaw development may have facilitated further tooth loss. Furthermore, the evolution of strong chemical digestion, a gizzard, and a dietary shift to omnivory or herbivory likely alleviated selective pressures for tooth development.


Subject(s)
Dinosaurs , Tooth Loss , Tooth , Animals , Phylogeny , Biological Evolution , Dinosaurs/anatomy & histology , Keratins , Fossils , Tooth/anatomy & histology
4.
Front Genet ; 13: 909267, 2022.
Article in English | MEDLINE | ID: mdl-35692842

ABSTRACT

Shimao City is considered an important political and religious center during the Late Neolithic Longshan period of the Middle Yellow River basin. The genetic history and population dynamics among the Shimao and other ancient populations, especially the Taosi-related populations, remain unknown. Here, we sequenced 172 complete mitochondrial genomes, ranging from the Yangshao to Longshan period, from individuals related to the Shimao culture in northern Shaanxi Province and Taosi culture in southern Shanxi Province, Middle Yellow River basin. Our results show that the populations inhabiting Shimao City had close genetic connections with an earlier population in the Middle Neolithic Yangshao period of northern Shaanxi Province, revealing a mostly local origin for the Shimao Society. In addition, among the populations in other regions of the Yellow River basin, the Shimao-related populations had the closest maternal affinity with the contemporaneous Taosi populations from the Longshan period. The Shimao-related populations also shared more affinity with present-day northern Han populations than with the minorities and southern Han in China. Our study provides a new perspective on the genetic origins and structure of the Shimao people and the population dynamics in the Middle Yellow River basin during the Neolithic period.

5.
J Genet Genomics ; 49(6): 537-546, 2022 06.
Article in English | MEDLINE | ID: mdl-34902603

ABSTRACT

Zoo-archaeological and genetic evidence suggest that pigs were domesticated independently in Central China and Eastern Anatolia along with the development of agricultural communities and civilizations. However, the genetic history of domestic pigs, especially in China, has not been fully explored. In this study, we generate 42 complete mitochondrial DNA sequences from ∼7500- to 2750-year-old individuals from the Yellow River basin. Our results show that the maternal genetic continuity of East Asian domestic pigs dates back to at least the Early to Middle Neolithic. In contrast, the Near Eastern ancestry in European domestic pigs saw a near-complete genomic replacement by the European wild boar. The majority of East Asian domestic pigs share close haplotypes, and the most recent common ancestor of most branches dates back to less than 20,000 years before present, inferred using new substitution rates of whole mitogenomes or combined protein-coding regions. Two major population expansion events of East Asian domestic pigs coincided with changes in climate, widespread adoption of introduced crops, and the development of agrarian societies. These findings add to our understanding of the maternal genetic composition and help to complete the picture of domestic pig evolutionary history in East Asia.


Subject(s)
DNA, Ancient , Sus scrofa , Animals , DNA, Mitochondrial/genetics , Genetic Variation , Haplotypes/genetics , Phylogeny , Sequence Analysis, DNA , Sus scrofa/genetics , Swine/genetics
6.
Sci Adv ; 7(14)2021 03.
Article in English | MEDLINE | ID: mdl-33789892

ABSTRACT

Xinjiang is a key region in northwestern China, connecting East and West Eurasian populations and cultures for thousands of years. To understand the genetic history of Xinjiang, we sequenced 237 complete ancient human mitochondrial genomes from the Bronze Age through Historical Era (41 archaeological sites). Overall, the Bronze Age Xinjiang populations show high diversity and regional genetic affinities with Steppe and northeastern Asian populations along with a deep ancient Siberian connection for the Tarim Basin Xiaohe individuals. In the Iron Age, in general, Steppe-related and northeastern Asian admixture intensified, with North and East Xinjiang populations showing more affinity with northeastern Asians and South Xinjiang populations showing more affinity with Central Asians. The genetic structure observed in the Historical Era of Xinjiang is similar to that in the Iron Age, demonstrating genetic continuity since the Iron Age with some additional genetic admixture with populations surrounding the Xinjiang region.

7.
Syst Biol ; 70(5): 1061-1075, 2021 08 11.
Article in English | MEDLINE | ID: mdl-33720380

ABSTRACT

Phylogenetic comparative methods (PCMs) are commonly used to study evolution and adaptation. However, frequently used PCMs for discrete traits mishandle single evolutionary transitions. They erroneously detect correlated evolution in these situations. For example, hair and mammary glands cannot be said to have evolved in a correlated fashion because each evolved only once in mammals, but a commonly used model (Pagel's Discrete) statistically supports correlated (dependent) evolution. Using simulations, we find that rate parameter estimation, which is central for model selection, is poor in these scenarios due to small effective (evolutionary) sample sizes of independent character state change. Pagel's Discrete model also tends to favor dependent evolution in these scenarios, in part, because it forces evolution through state combinations unobserved in the tip data. This model prohibits simultaneous dual transitions along branches. Models with underlying continuous data distributions (e.g., Threshold and GLMM) are less prone to favor correlated evolution but are still susceptible when evolutionary sample sizes are small. We provide three general recommendations for researchers who encounter these common situations: i) create study designs that evaluate a priori hypotheses and maximize evolutionary sample sizes; ii) assess the suitability of evolutionary models-for discrete traits, we introduce the phylogenetic imbalance ratio; and iii) evaluate evolutionary hypotheses with a consilience of evidence from disparate fields, like biogeography and developmental biology. Consilience plays a central role in hypothesis testing within the historical sciences where experiments are difficult or impossible to conduct, such as many hypotheses about correlated evolution. These recommendations are useful for investigations that employ any type of PCM. [Class imbalance; consilience; correlated evolution; evolutionary sample size; phylogenetic comparative methods.].


Subject(s)
Adaptation, Physiological , Biological Evolution , Animals , Phenotype , Phylogeny , Sample Size
8.
Philos Trans R Soc Lond B Biol Sci ; 375(1793): 20190146, 2020 03 02.
Article in English | MEDLINE | ID: mdl-31928192

ABSTRACT

Genome size has long been hypothesized to affect the metabolic rate in various groups of animals. The mechanism behind this proposed association is the nucleotypic effect, in which large nucleus and cell sizes influence cellular metabolism through surface area-to-volume ratios. Here, we provide a review of the recent literature on the relationship between genome size and metabolic rate. We also conduct an analysis using phylogenetic comparative methods and a large sample of extant vertebrates. We find no evidence that the effect of genome size improves upon models in explaining metabolic rate variation. Not surprisingly, our results show a strong positive relationship between metabolic rate and body mass, as well as a substantial difference in metabolic rate between endothermic and ectothermic vertebrates, controlling for body mass. The presence of endothermy can also explain elevated rate shifts in metabolic rate whereas genome size cannot. We further find no evidence for a punctuated model of evolution for metabolic rate. Our results do not rule out the possibility that genome size affects cellular physiology in some tissues, but they are consistent with previous research suggesting little support for a direct functional connection between genome size and basal metabolic rate in extant vertebrates. This article is part of the theme issue 'Vertebrate palaeophysiology'.


Subject(s)
Basal Metabolism , Genome Size , Vertebrates/genetics , Vertebrates/metabolism , Animals , Biological Evolution , Body Temperature Regulation/genetics , Phylogeny
9.
PLoS One ; 11(7): e0158962, 2016.
Article in English | MEDLINE | ID: mdl-27442509

ABSTRACT

Rugose projections on the anterior and posterior aspects of vertebral neural spines appear throughout Amniota and result from the mineralization of the supraspinous and interspinous ligaments via metaplasia, the process of permanent tissue-type transformation. In mammals, this metaplasia is generally pathological or stress induced, but is a normal part of development in some clades of birds. Such structures, though phylogenetically sporadic, appear throughout the fossil record of non-avian theropod dinosaurs, yet their physiological and adaptive significance has remained unexamined. Here we show novel histologic and phylogenetic evidence that neural spine projections were a physiological response to biomechanical stress in large-bodied theropod species. Metaplastic projections also appear to vary between immature and mature individuals of the same species, with immature animals either lacking them or exhibiting smaller projections, supporting the hypothesis that these structures develop through ontogeny as a result of increasing bending stress subjected to the spinal column. Metaplastic mineralization of spinal ligaments would likely affect the flexibility of the spinal column, increasing passive support for body weight. A stiff spinal column would also provide biomechanical support for the primary hip flexors and, therefore, may have played a role in locomotor efficiency and mobility in large-bodied species. This new association of interspinal ligament metaplasia in Theropoda with large body size contributes additional insight to our understanding of the diverse biomechanical coping mechanisms developed throughout Dinosauria, and stresses the significance of phylogenetic methods when testing for biological trends, evolutionary or not.


Subject(s)
Adaptation, Physiological , Body Size , Dinosaurs/anatomy & histology , Spine/anatomy & histology , Animals , Femur/anatomy & histology , Ligaments, Articular/anatomy & histology , Likelihood Functions , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...