Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Chem Commun (Camb) ; 59(76): 11405-11408, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37668310

ABSTRACT

Zeolitic imidazolate frameworks are widely thought of as being analogous to inorganic AB2 phases. We test the validity of this assumption by comparing simplified and fully atomistic machine-learning models for local environments in ZIFs. Our work addresses the central question to what extent chemical information can be "coarse-grained" in hybrid framework materials.

3.
J Chem Phys ; 158(12): 121501, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37003727

ABSTRACT

Machine learning (ML) approaches enable large-scale atomistic simulations with near-quantum-mechanical accuracy. With the growing availability of these methods, there arises a need for careful validation, particularly for physically agnostic models-that is, for potentials that extract the nature of atomic interactions from reference data. Here, we review the basic principles behind ML potentials and their validation for atomic-scale material modeling. We discuss the best practice in defining error metrics based on numerical performance, as well as physically guided validation. We give specific recommendations that we hope will be useful for the wider community, including those researchers who intend to use ML potentials for materials "off the shelf."

4.
Faraday Discuss ; 221(0): 281-298, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31539013

ABSTRACT

We use the coarse-grained Frenkel-Holstein model to simulate the relaxation, decoherence, and localization of photoexcited states in conformationally disordered π-conjugated polymers. The dynamics are computed via wave-packet propagation using matrix product states and the time evolution block decimation method. The ultrafast (i.e., t < 10 fs) coupling of an exciton to C-C bond vibrations creates an exciton-polaron. The relatively short (ca. 10 monomers) exciton-phonon correlation length causes ultrafast exciton-site decoherence, which is observable on conformationally disordered chains as fluorescence depolarization. Dissipative coupling to the environment (modelled via quantum jumps) causes the localization of quasi-extended exciton states (QEESs) onto local exciton ground states (LEGSs, i.e., chromophores). This is observable as lifetime broadening of the 0-0 transition (and vibronic satellites) of the QEES in two-dimensional electronic coherence spectroscopy. However, as this process is incoherent, neither population increases of the LEGSs nor coherences with LEGSs are observable.

SELECTION OF CITATIONS
SEARCH DETAIL
...