Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 18(6): 3473-3480, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29709191

ABSTRACT

Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. Here, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH2)2CsPb-halide (FACsPb-) and CH3NH3Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials. However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.

2.
ACS Nano ; 7(11): 9798-807, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24090435

ABSTRACT

We develop approaches to hold fluorescent silver clusters composed of only 10-20 atoms in nanoscale proximity, while retaining the individual structure of each cluster. This is accomplished using DNA clamp assemblies that incorporate a 10 atom silver cluster and a 15 or 16 atom silver cluster. Thermally modulated fluorescence resonance energy transfer (FRET) verifies assembly formation. Comparison to Förster theory, using measured spectral overlaps, indicates that the DNA clamps hold clusters within roughly 5 to 6 nm separations, in the range of the finest resolutions achievable on DNA scaffolds. The absence of spectral shifts in dual-cluster FRET pairs, relative to the individual clusters, shows that select few-atom silver clusters of different sizes are sufficiently stable to retain structural integrity within a single nanoscale DNA construct. The spectral stability of the cluster persists in a FRET pair with an organic dye molecule, in contrast to the blue-shifted emission of the dye.


Subject(s)
Fluorescence Resonance Energy Transfer , Nanotechnology/methods , Silver/chemistry , Base Sequence , Coloring Agents/chemistry , DNA/chemistry , Metal Nanoparticles/chemistry , Molecular Sequence Data , Normal Distribution , Oligonucleotides/chemistry , Rhodamines/chemistry , Spectrometry, Fluorescence , Temperature
3.
Adv Mater ; 25(20): 2797-803, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23371742

ABSTRACT

Fluorescent DNA-stabilized silver nanoclusters contain both cationic and neutral silver atoms. The absorbance spectra of compositionally pure solutions follow the trend expected for rod-shaped silver clusters, consistent with the polarized emission measured from individual nanoclusters. The data suggest a rod-like assembly of silver atoms, with silver cations mediating attachment to the bases.


Subject(s)
DNA/chemistry , DNA/ultrastructure , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Excipients/chemistry , Light , Materials Testing , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...