Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 109(8): 1592-9, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26488650

ABSTRACT

The cornea is the primary refractive lens in the eye and transmits >90% of incident visible light. It has been suggested that the development of postoperative corneal haze could be due to an increase in light scattering from activated corneal stromal cells. Quiescent keratocytes are thought to produce crystallins that match the refractive index of their cytoplasm to the surrounding extracellular material, reducing the amount of light scattering. To test this, we measured the refractive index (RI) of bovine corneal stromal cells, using quantitative phase imaging of live cells in vitro, together with confocal microscopy. The RI of quiescent keratocytes (RI = 1.381 ± 0.004) matched the surrounding matrix, thus supporting the hypothesis that keratocyte cytoplasm does not scatter light in the normal cornea. We also observed that the RI drops after keratocyte activation (RI = 1.365 ± 0.003), leading to a mismatch with the surrounding intercellular matrix. Theoretical scattering models showed that this mismatch would reduce light transmission in the cornea. We conclude that corneal transparency depends on the matching of refractive indices between quiescent keratocytes and the surrounding tissue, and that after surgery or wounding, the resulting RI mismatch between the activated cells and their surrounds significantly contributes to light scattering.


Subject(s)
Corneal Stroma/physiology , Corneal Stroma/radiation effects , Optical Imaging/methods , Scattering, Radiation , Animals , Cattle , Cell Size , Cells, Cultured , Corneal Keratocytes/physiology , Corneal Keratocytes/radiation effects , Corneal Stroma/cytology , Cytoplasm/physiology , Cytoplasm/radiation effects , Microscopy, Confocal , Models, Biological , Stromal Cells/physiology
3.
PLoS One ; 8(7): e68166, 2013.
Article in English | MEDLINE | ID: mdl-23861866

ABSTRACT

PURPOSE: To quantify long-term changes in stromal collagen ultrastructure following penetrating keratoplasty (PK), and evaluate their possible implications for corneal biomechanics. METHODS: A pair of 16 mm post-mortem corneo-scleral buttons was obtained from a patient receiving bilateral penetrating keratoplasty 12 (left)/28 (right) years previously. Small-angle x-ray scattering quantified collagen fibril spacing, diameter and spatial order at 0.5 mm or 0.25 mm intervals along linear scans across the graft margin. Corresponding control data was collected from two corneo-scleral buttons with no history of refractive surgery. Wide-angle x-ray scattering quantified collagen fibril orientation at 0.25 mm (horizontal)×0.25 mm (vertical) intervals across both PK specimens. Quantification of orientation changes in the graft margin were verified by equivalent analysis of data from a 13 year post-operative right PK specimen obtained from a second patient in a previous study, and comparison made with new and published data from normal corneas. RESULTS: Marked changes to normal fibril alignment, in favour of tangentially oriented collagen, were observed around the entire graft margin in all PK specimens. The total number of meridional fibrils in the wound margin was observed to decrease by up to 40%, with the number of tangentially oriented fibrils increasing by up to 46%. As a result, in some locations the number of fibrils aligned parallel to the wound outnumbered those spanning it by up to five times. Localised increases in fibril spacing and diameter, with an accompanying reduction in matrix order, were also evident. CONCLUSIONS: Abnormal collagen fibril size and spatial order within the PK graft margin are indicative of incomplete stromal wound remodelling and the long term persistence of fibrotic scar tissue. Lasting changes in collagen fibril orientation in and around PK wounds may alter corneal biomechanics and compromise the integrity of the graft-host interface in the long term.


Subject(s)
Collagen/chemistry , Cornea/chemistry , Cornea/cytology , Aged , Cornea/surgery , Corneal Stroma/chemistry , Corneal Stroma/cytology , Humans , Keratoplasty, Penetrating , Middle Aged , Tissue Donors , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...