Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; : e0121024, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028200

ABSTRACT

The high-level resistance to next-generation ß-lactams frequently found in Staphylococcus aureus isolates lacking mec, which encodes the transpeptidase PBP2a traditionally associated with methicillin-resistant Staphylococcus aureus (MRSA), has remained incompletely understood for decades. A new study by Lai et al. found that the co-occurrence of mutations in pbp4 and gdpP, which respectively cause increased PBP4-mediated cell wall crosslinking and elevated cyclic-di-AMP levels, produces synergistic ß-lactam resistance rivaling that of PBP2a-producing MRSA (L.-Y. Lai, N. Satishkumar, S. Cardozo, V. Hemmadi, et al., mBio 15:e02889-23. 2024, https://doi.org/10.1128/mbio.02889-23). The combined mutations are sufficient to explain the high-level ß-lactam resistance of some mec-lacking strains, but the mechanism of synergy remains elusive and an avenue for further research. Importantly, the authors establish that co-occurrence of these mutations leads to antibiotic therapy failure in a Caenorhabditis elegans infection model. These results underscore the need to consider this unique and novel ß-lactam resistance mechanism during the clinical diagnosis of MRSA, rather than relying on mec as a diagnostic.

SELECTION OF CITATIONS
SEARCH DETAIL
...