Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 17(1): 28-35, 2017 01 11.
Article in English | MEDLINE | ID: mdl-28032770

ABSTRACT

We study for the first time the resonant torsional behaviors of inorganic nanotubes, specifically tungsten disulfide (WS2) and boron nitride (BN) nanotubes, and compare them to that of carbon nanotubes. We have found WS2 nanotubes to have the highest quality factor (Q) and torsional resonance frequency, followed by BN nanotubes and carbon nanotubes. Dynamic and static torsional spring constants of the various nanotubes were found to be different, especially in the case of WS2, possibly due to a velocity-dependent intershell friction. These results indicate that inorganic nanotubes are promising building blocks for high-Q nanoelectromechanical systems (NEMS).

2.
ACS Nano ; 9(12): 12224-32, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26451698

ABSTRACT

The incorporation of nanostructures into nanoelectronic and nanoelectromechanical systems is a long sought-after goal. In the present article, we report the first torsional electromechanical measurements of pure inorganic nanotubes. The WS2 nanotubes exhibited a complex and reproducible electrical response to mechanical deformation. We combined these measurements with density-functional-tight-binding calculations to understand the interplay between mechanical deformation, specifically torsion and tension, and electrical properties of WS2 nanotubes. This yielded the understanding that the electrical response to mechanical deformation may span several orders of magnitude on one hand and detect several modes of mechanical deformation simultaneously on the other. These results demonstrate that inorganic nanotubes could thus be attractive building blocks for nanoelectromechanical systems such as highly sensitive nanometric motion sensors.

3.
Nano Lett ; 14(11): 6132-7, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25275220

ABSTRACT

Owing to their mechanically tunable electronic properties, carbon nanotubes (CNTs) have been widely studied as potential components for nanoelectromechanical systems (NEMS); however, the mechanical properties of multiwall CNTs are often limited by the weak shear interactions between the graphitic layers. Boron nitride nanotubes (BNNTs) exhibit a strong interlayer mechanical coupling, but their high electrical resistance limits their use as electromechanical transducers. Can the outstanding mechanical properties of BNNTs be combined with the electromechanical properties of CNTs in one hybrid structure? Here, we report the first experimental study of boron carbonitride nanotube (BCNNT) mechanics and electromechanics. We found that the hybrid BCNNTs are up to five times torsionally stiffer and stronger than CNTs, thereby retaining to a large extent the ultrahigh torsional stiffness of BNNTs. At the same time, we show that the electrical response of BCNNTs to torsion is 1 to 2 orders of magnitude higher than that of CNTs. These results demonstrate that BCNNTs could be especially attractive building blocks for NEMS.

4.
Nano Lett ; 12(12): 6347-52, 2012 Dec 12.
Article in English | MEDLINE | ID: mdl-23130892

ABSTRACT

We report the experimental and theoretical study of boron nitride nanotube (BNNT) torsional mechanics. We show that BNNTs exhibit a much stronger mechanical interlayer coupling than carbon nanotubes (CNTs). This feature makes BNNTs up to 1 order of magnitude stiffer and stronger than CNTs. We attribute this interlayer locking to the faceted nature of BNNTs, arising from the polarity of the B-N bond. This property makes BNNTs superior candidates to replace CNTs in nanoelectromechanical systems (NEMS), fibers, and nanocomposites.


Subject(s)
Boron Compounds/chemistry , Nanotubes/chemistry , Nanotubes/ultrastructure , Nanotubes, Carbon/chemistry , Shear Strength , Stress, Mechanical
5.
Phys Rev Lett ; 105(4): 046801, 2010 Jul 23.
Article in English | MEDLINE | ID: mdl-20867872

ABSTRACT

The interlayer sliding energy landscape of hexagonal boron nitride (h-BN) is investigated via a van der Waals corrected density functional theory approach. It is found that the main role of the van der Waals forces is to anchor the layers at a fixed distance, whereas the electrostatic forces dictate the optimal stacking mode and the interlayer sliding energy. A nearly free-sliding path is identified, along which band gap modulations of ∼0.6 eV are obtained. We propose a simple geometric model that quantifies the registry matching between the layers and captures the essence of the corrugated h-BN interlayer energy landscape. The simplicity of this phenomenological model opens the way to the modeling of complex layered structures, such as carbon and boron nitride nanotubes.

6.
Chemistry ; 12(15): 4144-52, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16453352

ABSTRACT

Homocysteine thiolactone (tHcy) is deemed a risk factor for cardiovascular diseases and strokes, presumably because it acylates the side chain of protein lysine residues ("N-homocysteinylation"), thereby causing protein damage and autoimmune responses. We analysed the kinetics of hydrolysis and aminolysis of tHcy and two related thiolactones (gamma-thiobutyrolactone and N-trimethyl-tHcy), and we have thereby described the first detailed mechanism of thiolactone aminolysis. As opposed to the previously studied (thio and oxo)esters and (oxo)lactones, aminolysis of thiolactones was found to be first order with respect to amine concentration. Anchimeric assistance by the alpha-amino group of tHcy (through general acid/base catalysis) could not be detected, and the Brønsted plot (nucleophilicity versus pK(a)) for aminolysis yielded a slope (beta(nuc)) value of 0.66. These data support a mechanism of aminolysis where the rate-determining step is the formation of a zwitterionic tetrahedral intermediate. The beta(nuc) value and steric factors dictate a regime whereby, at physiological pH values (pH 7.4), maximal reactivity of tHcy is exhibited with primary amine groups with a pK(a) value of 7.7; this allows the reactivity of various protein amino groups towards N-homocysteinylation to be predicted.


Subject(s)
Homocysteine/analogs & derivatives , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/chemistry , 4-Butyrolactone/metabolism , Atherosclerosis/metabolism , Homocysteine/chemistry , Homocysteine/metabolism , Humans , Hydrogen-Ion Concentration , Hydrolysis , Predictive Value of Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...