Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38202368

ABSTRACT

The possible differential response to the climatic fluctuations of co-occurring trees of different ages is still poorly known and rather controversial. Moreover, in managed forests, such a picture is further complicated by the impact of silvicultural practices. With this concern, in a multi-aged umbrella pine stand in the Maremma Regional Park (Tuscany, Italy), the spatial patterns and tree-ring response to the climate were investigated by differentiating trees into three classes, i.e., young, mature, and old. The aim was to assess the role of past management in shaping the current stand structure and affecting the growth dynamics at different ages, as well as to evaluate the possible shifting of tree adaptation to the climatic variables throughout plant aging. Our outcomes proved that the current mosaic of even-aged small patches results from a multifaceted forest management history. Until the 1960s, silvicultural treatments seemed more suitable in promoting tree growth and regeneration. Later on, inappropriate and/or untimely thinning probably triggered excessive competition from the top canopy trees, involving reduced stem and root system development in the younger plants living in the understory. Also, the intra-annual growth response to the climate showed some dependence on age. Younger trees are assumed not to be able to efficiently exploit water resources from the deep aquifer during the dry season, probably due to an insufficiently developed taproot, differently than older trees. Accordingly, appropriate and timely thinning, simulating frequent natural disturbances on small areas, could be a suitable management approach to promote sustained growth rates and regeneration processes, as well as healthy and vital trees at all life stages.

2.
Naturwissenschaften ; 104(9-10): 80, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28900670

ABSTRACT

Many small terrestrial vertebrates exhibit limited spatial movement and are considerably exposed to changes in local environmental variables. Among such vertebrates, amphibians at present experience a dramatic decline due to their limited resilience to environmental change. Since the local survival and abundance of amphibians is intrinsically related to the availability of shelters, conservation plans need to take microhabitat requirements into account. In order to gain insight into the terrestrial ecology of the spectacled salamander Salamandrina perspicillata and to identify appropriate forest management strategies, we investigated the salamander's seasonal variability in habitat use of trees as shelters in relation to tree features (size, buttresses, basal holes) and environmental variables in a beech forest in Italy. We used the occupancy approach to assess tree suitability on a non-conventional spatial scale. Our approach provides fine-grained parameters of microhabitat suitability and elucidates many aspects of the salamander's terrestrial ecology. Occupancy changed with the annual life cycle and was higher in autumn than in spring, when females were found closer to the stream in the study area. Salamanders showed a seasonal pattern regarding the trees they occupied and a clear preference for trees with a larger diameter and more burrows. With respect to forest management, we suggest maintaining a suitable number of trees with a trunk diameter exceeding 30 cm. A practice of selective logging along the banks of streams could help maintain an adequate quantity of the appropriate microhabitat. Furthermore, in areas with a presence of salamanders, a good forest management plan requires leaving an adequate buffer zone around streams, which should be wider in autumn than in spring.


Subject(s)
Urodela , Animals , Female , Forests , Italy , Trees
3.
J Environ Manage ; 181: 574-581, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27423770

ABSTRACT

A primary challenge in conservation biology is to preserve the most representative biodiversity while simultaneously optimizing the efforts associated with conservation. In Europe, the implementation of the Natura 2000 network requires protocols to recognize and map threats to biodiversity and to identify specific mitigation actions. We propose a systematic conservation planning approach to optimize management actions against specific threats based on two fundamental parameters: biodiversity values and threat pressure. We used the conservation planning software Marxan to optimize a fire management plan in a Natura 2000 coastal network in southern Italy. We address three primary questions: i) Which areas are at high fire risk? ii) Which areas are the most valuable for threatened biodiversity? iii) Which areas should receive priority risk-mitigation actions for the optimal effect?, iv) which fire-prevention actions are feasible in the management areas?. The biodiversity values for the Natura 2000 spatial units were derived from the distribution maps of 18 habitats and 89 vertebrate species of concern in Europe (Habitat Directive 92/43/EEC). The threat pressure map, defined as fire probability, was obtained from digital layers of fire risk and of fire frequency. Marxan settings were defined as follows: a) planning units of 40 × 40 m, b) conservation features defined as all habitats and vertebrate species of European concern occurring in the study area, c) conservation targets defined according with fire sensitivity and extinction risk of conservation features, and d) costs determined as the complement of fire probabilities. We identified 23 management areas in which to concentrate efforts for the optimal reduction of fire-induced effects. Because traditional fire prevention is not feasible for most of policy habitats included in the management areas, alternative prevention practices were identified that allows the conservation of the vegetation structure. The proposed approach has potential applications for multiple landscapes, threats and spatial scales and could be extended to other valuable natural areas, including protected areas.


Subject(s)
Biodiversity , Conservation of Natural Resources , Ecosystem , Fires , Conservation of Natural Resources/methods , Humans , Italy , Risk Management
4.
Environ Res ; 144(Pt B): 72-87, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26522278

ABSTRACT

Forest ecosystems are fundamental for the terrestrial biosphere as they deliver multiple essential ecosystem services (ES). In environmental management, understanding ES distribution and interactions and assessing the economic value of forest ES represent future challenges. In this study, we developed a spatially explicit method based on a multi-scale approach (MiMoSe-Multiscale Mapping of ecoSystem services) to assess the current and future potential of a given forest area to provide ES. To do this we modified and improved the InVEST model in order to adapt input data and simulations to the context of Mediterranean forest ecosystems. Specifically, we integrated a GIS-based model, scenario model, and economic valuation to investigate two ES (wood production and carbon sequestration) and their trade-offs in a test area located in Molise region (Central Italy). Spatial information and trade-off analyses were used to assess the influence of alternative forest management scenarios on investigated services. Scenario A was designed to describe the current Business as Usual approach. Two alternative scenarios were designed to describe management approaches oriented towards nature protection (scenario B) or wood production (scenario C) and compared to scenario A. Management scenarios were simulated at the scale of forest management units over a 20-year time period. Our results show that forest management influenced ES provision and associated benefits at the regional scale. In the test area, the Total Ecosystem Services Value of the investigated ES increases 85% in scenario B and decreases 82% in scenario C, when compared to scenario A. Our study contributes to the ongoing debate about trade-offs and synergies between carbon sequestration and wood production benefits associated with socio-ecological systems. The MiMoSe approach can be replicated in other contexts with similar characteristics, thus providing a useful basis for the projection of benefits from forest ecosystems over the future.


Subject(s)
Carbon Sequestration , Forestry/methods , Wood/analysis , Conservation of Natural Resources , Geographic Mapping , Italy , Models, Theoretical , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...