Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 31(6): 1139-45, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21324661

ABSTRACT

Waste plastics contain a substantial number of valuable chemicals. The wastes from post-consumer as well as from industrial production can be recycled to valuable chemical feedstock, which can be used in refineries and/or petrochemical industries. This chemical recycling process is an ideal approach in recycling the waste for a better environment. Polymer cracking using a laboratory fluidized bed reactor concentrated on the used highly contaminated catalyst, E-Cat 2. Even though E-Cat 2 had low activity due to fewer acid sites, the products yielded were similar with amorphous ASA and were far better than thermal cracking. The high levels of heavy metals, namely nickel and vanadium, deposited during their lifetime as an FCC catalyst, did not greatly affect on the catalyst activity. It was also shown that E-Cat 2 could be used with and without regeneration. Although there was more deactivation when there was no regeneration step, the yield of gases (C(2)-C(7)) remained fairly constant. For the first time, these results indicate that "waste" FCC catalyst (E-Cat) is a good candidate for future feedstock recycling of polymer waste. The major benefits of using E-Cat are a low market price, the ability to tolerate reuse and regeneration capacity.


Subject(s)
Plastics/chemistry , Recycling/methods , Refuse Disposal/methods , Aluminum Silicates/chemistry , Catalysis , Chromatography, Gas , Metals, Heavy/chemistry , Refuse Disposal/instrumentation
2.
Water Sci Technol ; 49(4): 219-25, 2004.
Article in English | MEDLINE | ID: mdl-15077975

ABSTRACT

Adsorption is an attractive route for the removal of coloured, toxic and non-biodegradable organics from wastewater as very low discharge standards can be achieved. This paper reports on the use of a novel carbon-based material, Nyex100, as an adsorbent material for the treatment of dyehouse effluent. The adsorbent has low porosity and high electrical conductivity and these factors have allowed the adsorbent to be electrochemically regenerated. This work has demonstrated that the adsorbent can be cycled through the process of adsorption and regeneration a number of times with little drop in adsorptive capacity. However regeneration appears to modify the preference for organic species adsorption. Electrochemical regeneration can be rapidly achieved (15-20 minutes) using low current densities (< 20 mA cm(-2)). However, the low adsorptive capacity of the adsorbent, because of its small surface area, means that large quantities of adsorbent would need to be cycled within the process to treat the effluent volume generated in even small dyehouses. Thus, it is believed that operating the process in this mode limits the practical application of this technology.


Subject(s)
Carbon/chemistry , Coloring Agents/isolation & purification , Waste Disposal, Fluid/methods , Water Pollutants/isolation & purification , Water Purification/methods , Adsorption , Coloring Agents/chemistry , Electrochemistry , Oxidation-Reduction , Textile Industry
SELECTION OF CITATIONS
SEARCH DETAIL
...