Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
MethodsX ; 11: 102319, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37637292

ABSTRACT

This method article describes the fabrication of graphene-epoxy nanocomposites using two different solvents, dimethylformamide (DMF) and acetone, and validates the resulting thermal conductivity improvements. The study compared the two solvents at a filler composition of 7 wt% and found that DMF resulted in more uniform dispersion of graphene nanoparticles in the epoxy matrix, leading to a 44% improvement in thermal conductivity compared to acetone. Laser scanning confocal microscopy (LSCM) imaging showed that DMF-based composites had more evenly dispersed graphene nanoplatelets than acetone-based composites, which exhibited larger graphene agglomerations. Effective medium theory calculations showed that DMF led to almost 35% lower interface thermal resistance between graphene and epoxy compared to acetone. The validated fabrication method and findings provide new possibilities for developing high thermal conductivity graphene-epoxy nanocomposites for various thermal management applications.•This article describes methods for fabricating graphene-epoxy composites using acetone and DMF as solvents, and validates that DMF is better for achieving higher thermal conductivity in the composite.

2.
Nat Commun ; 14(1): 3190, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37268627

ABSTRACT

The development of cryogenic semiconductor electronics and superconducting quantum computing requires composite materials that can provide both thermal conduction and thermal insulation. We demonstrated that at cryogenic temperatures, the thermal conductivity of graphene composites can be both higher and lower than that of the reference pristine epoxy, depending on the graphene filler loading and temperature. There exists a well-defined cross-over temperature-above it, the thermal conductivity of composites increases with the addition of graphene; below it, the thermal conductivity decreases with the addition of graphene. The counter-intuitive trend was explained by the specificity of heat conduction at low temperatures: graphene fillers can serve as, both, the scattering centers for phonons in the matrix material and as the conduits of heat. We offer a physical model that explains the experimental trends by the increasing effect of the thermal boundary resistance at cryogenic temperatures and the anomalous thermal percolation threshold, which becomes temperature dependent. The obtained results suggest the possibility of using graphene composites for, both, removing the heat and thermally insulating components at cryogenic temperatures-a capability important for quantum computing and cryogenically cooled conventional electronics.

3.
J Mater Chem C Mater ; 11(43): 15357-15365, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38304018

ABSTRACT

Recently, metal halides have shown great potential for applications such as solar energy harvesting, light emission, and ionizing radiation detection. In this work, we report the preparation, structural, thermal, and electronic properties of a new zero-dimensional (0D) halide (TEP)InBr4 (where TEP is tetraethylphosphonium organic cation, C8H20P+). (TEP)InBr4 single crystals are obtained within a few days of continuous crystal growth time via a solution growth methodology. (TEP)InBr4 shows a relatively large optical bandgap energy of 4.32 eV and a low thermal conductivity between 0.33±0.05 and 0.45±0.07 W/m-K. Based on the density functional theory (DFT) calculations, the highest occupied molecular orbitals (HOMOs) of (TEP)InBr4 are dominated by the Br states, while the lowest unoccupied molecular orbitals (LUMOs) are constituted by both In and Br states. (TEP)InBr4 single crystals exhibit a semiconductor resistivity of 1.73×1013 Ω·cm and a mobility-lifetime (mu-tau) product of 2.07×10-5 cm2/V. Finally, a prototype (TEP)InBr4 single crystal-based X-ray detector with a detection sensitivity of 569.85 uCGy-1cm-2 (at electrical field E=100 V/mm) was fabricated, indicating the potential use of (TEP)InBr4 for radiation detection applications.

4.
Phys Chem Chem Phys ; 24(47): 28814-28824, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36416288

ABSTRACT

In this study, we report the length dependence of thermal conductivity (k) of zinc blende-structured Zinc Selenide (ZnSe) and Zinc Telluride (ZnTe) for length scales between 10 nm and 10 µm using first-principles computations, based on density-functional theory. The k value of ZnSe is computed to decrease significantly from 22.9 W m-1 K-1 to 1.8 W m-1 K-1 as the length scale is diminished from 10 µm to 10 nm. The k value of ZnTe is also observed to decrease from 12.6 W m-1 K-1 to 1.2 W m-1 K-1 for the same decrease in length. We also measured the k of bulk ZnSe and ZnTe using the Frequency Domain Thermoreflectance (FDTR) technique and observed a good agreement between the FDTR measurements and first principles calculations for bulk ZnSe and ZnTe. Understanding the thermal conductivity reduction at the nanometer length scale provides an avenue to incorporate nanostructured ZnSe and ZnTe for thermoelectric applications.

5.
Nanomaterials (Basel) ; 12(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35683733

ABSTRACT

We demonstrate in this work that expanded graphite (EG) can lead to a very large enhancement in thermal conductivity of polyetherimide-graphene and epoxy-graphene nanocomposites prepared via solvent casting technique. A k value of 6.6 W⋅m-1⋅K-1 is achieved for 10 wt% composition sample, representing an enhancement of ~2770% over pristine polyetherimide (k~0.23 W⋅m-1⋅K-1). This extraordinary enhancement in thermal conductivity is shown to be due to a network of continuous graphene sheets over long-length scales, resulting in low thermal contact resistance at bends/turns due to the graphene sheets being covalently bonded at such junctions. Solvent casting offers the advantage of preserving the porous structure of expanded graphite in the composite, resulting in the above highly thermally conductive interpenetrating network of graphene and polymer. Solvent casting also does not break down the expanded graphite particles due to minimal forces involved, allowing for efficient heat transfer over long-length scales, further enhancing overall composite thermal conductivity. Comparisons with a recently introduced effective medium model show a very high value of predicted particle-particle interfacial conductance, providing evidence for efficient interfacial thermal transport in expanded graphite composites. Field emission environmental scanning electron microscopy (FE-ESEM) is used to provide a detailed understanding of the interpenetrating graphene-polymer structure in the expanded graphite composite. These results open up novel avenues for achieving high thermal conductivity polymer composites.

6.
Phys Chem Chem Phys ; 24(23): 14640-14650, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35670366

ABSTRACT

To achieve polymer-graphene nanocomposites with high thermal conductivity (k), it is critically important to achieve efficient thermal coupling between graphene and the surrounding polymer matrix through effective functionalization schemes. In this work, we demonstrate that edge-functionalization of graphene nanoplatelets (GnPs) can enable a larger enhancement of effective thermal conductivity in polymer-graphene nanocomposites relative to basal plane functionalization. Effective thermal conductivity for the edge case is predicted, through molecular dynamics simulations, to be up to 48% higher relative to basal plane bonding for 35 wt% graphene loading with 10 layer thick nanoplatelets. The beneficial effect of edge bonding is related to the anisotropy of thermal transport in graphene, involving very high in-plane thermal conductivity (∼2000 W m-1 K-1) compared to the low out-of-plane thermal conductivity (∼10 W m-1 K-1). Likewise, in multilayer graphene nanoplatelets (GnPs), the thermal conductivity across the layers is even lower due to the weak van der Waals bonding between each pair of layers. Edge functionalization couples the polymer chains to the high in-plane thermal conduction pathway of graphene, thus leading to overall high thermal conductivity of the composite. Basal-plane functionalization, however, lowers the thermal resistance between the polymer and the surface graphene sheets of the nanoplatelet only, causing the heat conduction through inner layers to be less efficient, thus resulting in the basal plane scheme to be outperformed by the edge scheme. The present study enables fundamentally novel pathways for achieving high thermal conductivity polymer nanocomposites.

7.
ACS Appl Mater Interfaces ; 14(12): 14753-14763, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35289597

ABSTRACT

In this work, we demonstrate that edge oxidation of graphene can enable larger enhancement in thermal conductivity (k) of graphene nanoplatelet (GnP)/polyetherimide (PEI) composites relative to oxidation of the basal plane of graphene. Edge oxidation offers the advantage of leaving the basal plane of graphene intact, preserving its high in-plane thermal conductivity (kin > 2000 W m-1 K-1), while, simultaneously, the oxygen groups introduced on the graphene edge enhance interfacial thermal conductance through hydrogen bonding with oxygen groups of PEI, enhancing the overall polymer composite thermal conductivity. Edge oxidation is achieved in this work by oxidizing graphene in the presence of sodium chlorate and hydrogen peroxide, thereby introducing an excess of carboxyl groups on the edge of graphene. Basal plane oxidation of graphene, on the other hand, is achieved through the Hummers method, which distorts the sp2 carbon-carbon network of graphene, dramatically lowering its intrinsic thermal conductivity, causing the BGO/PEI (BGO = basal-plane oxidized graphene or basal-plane-functionalized graphene oxide) composite's k value to be even lower than pristine GnP/PEI composite's k value. The resulting thermal conductivity of the EGO/PEI (EGO = edge-oxidized graphene or edge-functionalized graphene oxide) composite is found to be enhanced by 18%, whereas that of the BGO/PEI composite is diminished by 57%, with respect to the pristine GnP/PEI composite with 10 wt % GnP content. Two-dimensional Raman mapping of GnPs is used to confirm and distinguish the location of oxygen functional groups on graphene. The superior effect of edge bonding presented in this work can lead to fundamentally novel pathways for achieving high thermal conductivity polymer composites.

8.
Phys Chem Chem Phys ; 22(36): 20914-20921, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32924047

ABSTRACT

Breakdown of Fourier law of heat conduction at nanometer length scales significantly diminishes thermal conductivity, leading to challenges in thermal management of nanoelectronic applications. In this work we demonstrate using first-principles computations that biaxial strain can enhance k at a nanoscale in boron phosphide (BP), yielding nanoscale k values that exceed even the bulk k value of silicon. At a length scale of L = 200 nm, k of 4% biaxially strained BP is enhanced by 25% to a value of 150.4 W m-1 K-1, relative to 120 W m-1 K-1 computed for unstrained BP at 300 K. The enhancement in k at a nanoscale is found to be due to the suppression of anharmonic scattering in the higher frequency range where phonon meanfreepaths are in nanometers, mediated by an increase in the phonon band gap in strained BP. Such a suppression in scattering enhances the meanfreepaths in the nanometer regime, thus enhancing nanoscale k. First-principles computations based on deriving harmonic and anharmonic force interactions from density-functional theory are used to provide detailed understanding of the effect in terms of individual scattering channels.

9.
Nanomaterials (Basel) ; 10(7)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32630082

ABSTRACT

Thermal conductivity (k) of polymers is usually limited to low values of ~0.5 W in comparison to metals (>20 W). The goal of this work is to enhance thermal conductivity (k) of polyethylene-graphene nanocomposites through simultaneous alignment of polyethylene (PE) lamellae and graphene nanoplatelets (GnP). Alignment is achieved through the application of strain. Measured values are compared with predictions from effective medium theory. A twin conical screw micro compounder is used to prepare polyethylene-graphene nanoplatelet (PE-GnP) composites. Enhancement in k value is studied for two different compositions with GnP content of 9 weight% and 13 weight% and for applied strains ranging from 0% to 300%. Aligned PE-GnP composites with 13 weight% GnP displays ~1000% enhancement in k at an applied strain of 300%, relative to k of pristine unstrained polymer. Laser Scanning Confocal Microscopy (LSCM) is used to quantitatively characterize the alignment of GnP flakes in strained composites; this measured orientation is used as an input for effective medium predictions. These results have important implications for thermal management applications.

10.
RSC Adv ; 10(70): 42628-42632, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-35514895

ABSTRACT

In this work, we report a high thermal conductivity (k) of 162 W m-1 K-1 and 52 W m-1 K-1 at room temperature, along the directions perpendicular and parallel to the c-axis, respectively, of bulk hexagonal BC2P (h-BC2P), using first-principles calculations. We systematically investigate elastic constants, phonon group velocities, phonon linewidths and mode thermal conductivity contributions of transverse acoustic (TA), longitudinal acoustic (LA) and optical phonons. Interestingly, optical phonons are found to make a large contribution of 30.1% to the overall k along a direction perpendicular to the c-axis at 300 K. BC2P is also found to exhibit high thermal conductivity at nanometer length scales. At 300 K, a high k value of ∼47 W m-1 K-1 is computed for h-BC2P at a nanometer length scale of 50 nm, providing avenues for achieving efficient nanoscale heat transfer.

11.
Nanoscale ; 9(35): 12867-12873, 2017 Sep 14.
Article in English | MEDLINE | ID: mdl-28858355

ABSTRACT

The effect of simultaneous alignment of polyethylene (PE) lamellae and graphene nanoplatelets (GnP) on the thermal conductivity (k) of PE-GnP composites is investigated. Measurements reveal a large increase of 1100% in k of the aligned PE-GnP composite using 10 wt% GnPs relative to unoriented pure PE. The rate of increase of k with applied strain for the pure PE-GnP composite with 10 wt% GnP is found to be almost a factor of two higher than the pure PE sample, pointing to the beneficial effect of GnP alignment on k enhancement. Aligned GnPs are further found to be 3 times as effective in enhancing k as in the randomly oriented configuration. Enhancement in k is correlated with the alignment of PE lamellae and GnPs through wide-angle X-ray scattering and polarized Raman spectroscopy. At the maximum applied strain of 400% and using 10 wt% GnPs, a composite k of 5.9 W mK-1 is achieved. These results demonstrate the great potential of simultaneous alignment effects in achieving high k polymer composites.

12.
Nat Commun ; 6: 6755, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25849305

ABSTRACT

When the separation of two surfaces approaches sub-nanometre scale, the boundary between the two most fundamental heat transfer modes, heat conduction by phonons and radiation by photons, is blurred. Here we develop an atomistic framework based on microscopic Maxwell's equations and lattice dynamics to describe the convergence of these heat transfer modes and the transition from one to the other. For gaps >1 nm, the predicted conductance values are in excellent agreement with the continuum theory of fluctuating electrodynamics. However, for sub-nanometre gaps we find the conductance is enhanced up to four times compared with the continuum approach, while avoiding its prediction of divergent conductance at contact. Furthermore, low-frequency acoustic phonons tunnel through the vacuum gap by coupling to evanescent electric fields, providing additional channels for energy transfer and leading to the observed enhancement. When the two surfaces are in or near contact, acoustic phonons become dominant heat carriers.

13.
Nano Lett ; 13(9): 3973-7, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23952943

ABSTRACT

We combine the transient thermal grating and time-domain thermoreflectance techniques to characterize the anisotropic thermal conductivities of GaAs/AlAs superlattices from the same wafer. The transient grating technique is sensitive only to the in-plane thermal conductivity, while time-domain thermoreflectance is sensitive to the thermal conductivity in the cross-plane direction, making them a powerful combination to address the challenges associated with characterizing anisotropic heat conduction in thin films. We compare the experimental results from the GaAs/AlAs superlattices with first-principles calculations and previous measurements of Si/Ge SLs. The measured anisotropy is smaller than that of Si/Ge SLs, consistent with both the mass-mismatch picture of interface scattering and with the results of calculations from density-functional perturbation theory with interface mixing included.


Subject(s)
Anisotropy , Arsenicals/chemistry , Gallium/chemistry , Thermal Conductivity , Hot Temperature , Molecular Weight , Nanostructures , Silicon/chemistry
14.
Science ; 338(6109): 936-9, 2012 Nov 16.
Article in English | MEDLINE | ID: mdl-23161996

ABSTRACT

The control of heat conduction through the manipulation of phonons as coherent waves in solids is of fundamental interest and could also be exploited in applications, but coherent heat conduction has not been experimentally confirmed. We report the experimental observation of coherent heat conduction through the use of finite-thickness superlattices with varying numbers of periods. The measured thermal conductivity increased linearly with increasing total superlattice thickness over a temperature range from 30 to 150 kelvin, which is consistent with a coherent phonon heat conduction process. First-principles and Green's function-based simulations further support this coherent transport model. Accessing the coherent heat conduction regime opens a new venue for phonon engineering for an array of applications.

15.
Nano Lett ; 12(6): 2673-8, 2012 Jun 13.
Article in English | MEDLINE | ID: mdl-22591411

ABSTRACT

We use first-principles methods based on density functional perturbation theory to characterize the lifetimes of the acoustic phonon modes and their consequences on the thermal transport properties of graphene. We show that using a standard perturbative approach, the transverse and longitudinal acoustic phonons in free-standing graphene display finite lifetimes in the long-wavelength limit, making them ill-defined as elementary excitations in samples of dimensions larger than ∼1 µm. This behavior is entirely due to the presence of the quadratic dispersions for the out-of-plane phonon (ZA) flexural modes that appear in free-standing low-dimensional systems. Mechanical strain lifts this anomaly, and all phonons remain well-defined at any wavelength. Thermal transport is dominated by ZA modes, and the thermal conductivity is predicted to diverge with system size for any amount of strain. These findings highlight strain and sample size as key parameters in characterizing or engineering heat transport in graphene.


Subject(s)
Graphite/chemistry , Models, Chemical , Nanostructures/chemistry , Nanostructures/ultrastructure , Acoustics , Computer Simulation , Elastic Modulus , Energy Transfer , Hot Temperature , Scattering, Radiation , Thermal Conductivity
16.
Nano Lett ; 11(12): 5135-41, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22035188

ABSTRACT

The thermal conductivity of ideal short-period superlattices is computed using harmonic and anharmonic force constants derived from density-functional perturbation theory and by solving the Boltzmann transport equation in the single-mode relaxation time approximation, using silicon-germanium as a paradigmatic case. We show that in the limit of small superlattice period the computed thermal conductivity of the superlattice can exceed that of both the constituent materials. This is found to be due to a dramatic reduction in the scattering of acoustic phonons by optical phonons, leading to very long phonon lifetimes. By variation of the mass mismatch between the constituent materials in the superlattice, it is found that this enhancement in thermal conductivity can be engineered, providing avenues to achieve high thermal conductivities in nanostructured materials.

17.
Phys Rev Lett ; 106(4): 045901, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21405336

ABSTRACT

The thermal conductivity of disordered silicon-germanium alloys is computed from density-functional perturbation theory and with relaxation times that include both harmonic and anharmonic scattering terms. We show that this approach yields an excellent agreement at all compositions with experimental results and provides clear design rules for the engineering of nanostructured thermoelectrics. For Si(x)Ge(1-x), more than 50% of the heat is carried at room temperature by phonons of mean free path greater than 1   µm, and an addition of as little as 12% Ge is sufficient to reduce the thermal conductivity to the minimum value achievable through alloying. Intriguingly, mass disorder is found to increase the anharmonic scattering of phonons through a modification of their vibration eigenmodes, resulting in an increase of 15% in thermal resistivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...