Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
J Neuroinflammation ; 21(1): 62, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419079

ABSTRACT

BACKGROUND: Presence of autoantibodies against α-synuclein (α-syn AAb) in serum of the general population has been widely reported. That such peripheral factors may be involved in central nervous system pathophysiology was demonstrated by detection of immunoglobulins (IgGs) in cerebrospinal fluid and brain of Parkinson's disease (PD) patients. Thus, blood-borne IgGs may reach the brain parenchyma through an impaired blood-brain barrier (BBB). FINDINGS: The present study aims to evaluate the patho-physiological impact of α-syn AAbs on primary brain cells, i.e., on spontaneously active neurons and on astrocytes. Exposure of neuron-astrocyte co-cultures to human serum containing α-syn AAbs mediated a dose-dependent reduction of spontaneous neuronal activity, and subsequent neurodegeneration. Removal specifically of α-syn AAbs from the serum prevented neurotoxicity, while purified, commercial antibodies against α-syn mimicked the neurodegenerative effect. Mechanistically, we found a strong calcium flux into neurons preceding α-syn AAbs-induced cell death, specifically through NMDA receptors. NMDA receptor antagonists prevented neurodegeneration upon treatment with α-syn (auto)antibodies. α-syn (auto)antibodies did not affect astrocyte survival. However, in presence of α-syn, astrocytes reacted to α-syn antibodies by secretion of the chemokine RANTES. CONCLUSION: These findings provide a novel basis to explain how a combination of BBB impairment and infiltration of IgGs targeting synuclein may contribute to neurodegeneration in PD and argue for caution with α-syn immunization therapies for treatment of PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Parkinson Disease/metabolism , Brain/metabolism , Neurons/metabolism , Immunoglobulins/metabolism
2.
Front Mol Neurosci ; 15: 868790, 2022.
Article in English | MEDLINE | ID: mdl-35721317

ABSTRACT

α-synuclein (α-Syn) is intimately linked to synucleinopathies like Parkinson's disease and dementia with Lewy bodies. However, the pathophysiological mechanisms that are triggered by this protein are still largely enigmatic. α-Syn overabundance may cause neurodegeneration through protein accumulation and mitochondrial deterioration but may also result in pathomechanisms independent from neuronal cell death. One such proposed pathological mechanism is the influence of α-Syn on non-stimulated, intrinsic brain activity. This activity is responsible for more than 90% of the brain's energyconsumption, and is thus thought to play an eminent role in basic brain functionality. Here we report that α-Syn substantially disrupts intrinsic neuronal network burst activity in a long-term neuronal cell culture model. Mechanistically, the impairment of network activity originates from reduced levels of cyclic AMP and cyclic AMP-mediated signaling as well as from diminished numbers of active presynaptic terminals. The profound reduction of network activity due to α-Syn was mediated only by intracellularly expressed α-Syn, but not by α-Syn that is naturally released by neurons. Conversely, extracellular pre-formed fibrils of α-Syn mimicked the effect of intracellular α-Syn, suggesting that they trigger an off-target mechanism that is not activated by naturally released α-Syn. A simulation-based model of the network activity in our cultures demonstrated that even subtle effect sizes in reducing outbound connectivity, i.e., loss of active synapses, can cause substantial global reductions in non-stimulated network activity. These results suggest that even low-level loss of synaptic output capabilities caused by α-Syn may result in significant functional impairments in terms of intrinsic neuronal network activity. Provided that our model holds true for the human brain, then α-Syn may cause significant functional lesions independent from neurodegeneration.

3.
Mol Cell Neurosci ; 121: 103746, 2022 07.
Article in English | MEDLINE | ID: mdl-35660088

ABSTRACT

Several studies have investigated if the levels of α-synuclein autoantibodies (α-syn AAb) differ in serum of Parkinson's disease (PD) patients and healthy subjects. Reproducible differences in their levels could serve as a biomarker for PD. The results of previous studies however remain inconclusive. With the largest sample size examined so far, we aimed to validate serum α-syn AAb levels as a biomarker for PD and investigated the presence of AAbs against other synucleins. We performed ELISA and immunoblots to determine synuclein AAb levels in the serum of 295 subjects comprising 157 PD patients from two independent cohorts, 46 healthy subjects, and 92 patients with other neurodegenerative disorders. Although serum α- and ß-syn AAb levels were significantly reduced in patients with PD and other neurodegenerative disorders as compared to controls, the AAb levels displayed high inter-and intra-cohort variability. Furthermore, α-syn AAb levels showed no correlation to clinical parameters like age, disease duration, disease severity, and gender, that might also be directed against beta- and gamma-syn. In conclusion, serum synuclein AAb levels do allow the separation of PD from healthy subjects but not from other neurodegenerative disorders. Thus, synuclein AAbs cannot be regarded as a reliable biomarker for PD.


Subject(s)
Parkinson Disease , Autoantibodies , Biomarkers , Cohort Studies , Humans , Parkinson Disease/diagnosis , Severity of Illness Index , alpha-Synuclein
6.
Glia ; 67(10): 1893-1909, 2019 10.
Article in English | MEDLINE | ID: mdl-31246351

ABSTRACT

Human astrocytes differ dramatically in cell morphology and gene expression from murine astrocytes. The latter are well known to be of major importance in the formation of neuronal networks by promoting synapse maturation. However, whether human astrocyte lineage cells have a similar role in network formation has not been firmly established. Here, we investigated the impact of human astrocyte lineage cells on the functional maturation of neural networks that were derived from human induced pluripotent stem cells (hiPSCs). Initial in vitro differentiation of hiPSC-derived neural progenitor cells and immature neurons (glia+ cultures) resulted in spontaneously active neural networks as indicated by synchronous neuronal Ca2+ transients. Depleting proliferating neural progenitors from these cultures by short-term antimitotic treatment resulted in strongly astrocyte lineage cell-depleted neuronal networks (glia- cultures). Strikingly, in contrast to glia+ cultures, glia- cultures did not exhibit spontaneous network activity. Detailed analysis of the morphological and electrophysiological properties of neurons by patch clamp recordings revealed reduced dendritic arborization in glia- cultures. In addition, a reduced action potential frequency upon current injection in pyramidal-like neurons was observed, whereas the electrical excitability of multipolar neurons was unaltered. Furthermore, we found a reduced dendritic density of PSD95-positive excitatory synapses, and more immature properties of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) miniature excitatory postsynaptic currents (mEPSCs) in glia- cultures, suggesting that the maturation of glutamatergic synapses depends on the presence of hiPSC-derived astrocyte lineage cells. Intriguingly, addition of the astrocyte-derived synapse maturation inducer cholesterol increased the dendritic density of PSD95-positive excitatory synapses in glia- cultures.


Subject(s)
Astrocytes/physiology , Cell Lineage , Induced Pluripotent Stem Cells/physiology , Neurogenesis/physiology , Neurons/physiology , Synapses/physiology , Action Potentials/physiology , Cells, Cultured , Excitatory Postsynaptic Potentials/physiology , Glutamic Acid/metabolism , Humans , Miniature Postsynaptic Potentials/physiology , Neural Pathways/physiology , Neural Stem Cells/physiology , Receptors, AMPA/metabolism
7.
Biol Chem ; 400(9): 1113-1127, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31188740

ABSTRACT

Historically considered as accessory cells to neurons, there is an increasing interest in the role of astrocytes in normal and pathological conditions. Astrocytes are involved in neurotransmitter recycling, antioxidant supply, ion buffering and neuroinflammation, i.e. a lot of the same pathways that go astray in Alzheimer's disease (AD). AD remains the leading cause of dementia in the elderly, one for which there is still no cure. Efforts in AD drug development have largely focused on treating neuronal pathologies that appear relatively late in the disease. The neuroenergetic hypothesis, however, focuses on the early event of glucose hypometabolism in AD, where astrocytes play a key role, caused by an imbalanced neuron-astrocyte lactate shuttle. This further results in a state of oxidative stress and neuroinflammation, thereby compromising the integrity of astrocyte-neuron interaction. Compromised astrocytic energetics also enhance amyloid generation, further increasing the severity of the disease. Additionally, apolipoprotein E (APOE), the major genetic risk factor for AD, is predominantly secreted by astrocytes and plays a critical role in amyloid clearance and regulates glucose metabolism in an amyloid-independent manner. Thus, boosting the neuroprotective properties of astrocytes has potential applications in delaying the onset and progression of AD. This review explores how the metabolic dysfunction arising from astrocytes acts as a trigger for the development of AD.


Subject(s)
Alzheimer Disease/metabolism , Astrocytes/metabolism , Brain/metabolism , Alzheimer Disease/etiology , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Apolipoproteins E/metabolism , Brain/pathology , Humans , Protein Isoforms/metabolism
9.
Ann Neurosci ; 17(2): 102, 2010 Apr.
Article in English | MEDLINE | ID: mdl-25205882
10.
Ann Neurosci ; 17(3): 151, 2010 Jul.
Article in English | MEDLINE | ID: mdl-25205895
SELECTION OF CITATIONS
SEARCH DETAIL