Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 52(7): 1828-44, 2009 Apr 09.
Article in English | MEDLINE | ID: mdl-19284751

ABSTRACT

On the basis of a mechanistic understanding of the toxicity of the 4-aminoquinoline amodiaquine (1b), three series of amodiaquine analogues have been prepared where the 4-aminophenol "metabolic alert" has been modified by replacement of the 4'-hydroxy group with a hydrogen, fluorine, or chlorine atom. Following antimalarial assessment and studies on mechanism of action, two candidates were selected for detailed ADME studies and in vitro and in vivo toxicological assessment. 4'-Fluoro-N-tert-butylamodiaquine (2k) was subsequently identified as a candidate for further development studies based on potent activity versus chloroquine-sensitive and resistant parasites, moderate to excellent oral bioavailability, low toxicity in in vitro studies, and an acceptable safety profile.


Subject(s)
Aminoquinolines/chemical synthesis , Amodiaquine/analogs & derivatives , Amodiaquine/chemical synthesis , Antimalarials/chemical synthesis , Aminoquinolines/pharmacokinetics , Aminoquinolines/pharmacology , Amodiaquine/chemistry , Amodiaquine/pharmacokinetics , Amodiaquine/pharmacology , Animals , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Cell Survival , Chloroquine/pharmacology , Dogs , Drug Resistance , Female , Haplorhini , Hepatocytes/cytology , Hepatocytes/drug effects , Humans , In Vitro Techniques , Malaria/drug therapy , Malaria/parasitology , Male , Mice , Parasitic Sensitivity Tests , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Plasmodium yoelii/drug effects , Rats , Rats, Wistar , Structure-Activity Relationship
2.
J Med Chem ; 52(5): 1408-15, 2009 Mar 12.
Article in English | MEDLINE | ID: mdl-19222165

ABSTRACT

N-tert-Butyl isoquine (4) (GSK369796) is a 4-aminoquinoline drug candidate selected and developed as part of a public-private partnership between academics at Liverpool, MMV, and GSK pharmaceuticals. This molecule was rationally designed based on chemical, toxicological, pharmacokinetic, and pharmacodynamic considerations and was selected based on excellent activity against Plasmodium falciparum in vitro and rodent malaria parasites in vivo. The optimized chemistry delivered this novel synthetic quinoline in a two-step procedure from cheap and readily available starting materials. The molecule has a full industry standard preclinical development program allowing first into humans to proceed. Employing chloroquine (1) and amodiaquine (2) as comparator molecules in the preclinical plan, the first preclinical dossier of pharmacokinetic, toxicity, and safety pharmacology has also been established for the 4-aminoquinoline antimalarial class. These studies have revealed preclinical liabilities that have never translated into the human experience. This has resulted in the availability of critical information to other drug development teams interested in developing antimalarials within this class.


Subject(s)
Aminoquinolines/pharmacology , Antimalarials/pharmacology , Benzylamines/pharmacology , Aminoquinolines/chemical synthesis , Aminoquinolines/chemistry , Aminoquinolines/pharmacokinetics , Aminoquinolines/toxicity , Amodiaquine/analogs & derivatives , Animals , Antimalarials/chemical synthesis , Antimalarials/pharmacokinetics , Antimalarials/toxicity , Benzylamines/chemical synthesis , Benzylamines/chemistry , Benzylamines/toxicity , Cytochrome P-450 Enzyme Inhibitors , Dogs , Drug Evaluation, Preclinical , Drug Resistance , Female , Haplorhini , Heme/chemistry , Humans , Malaria/drug therapy , Mice , Models, Molecular , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Plasmodium yoelii , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...