Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Cell ; 22(10): e13957, 2023 10.
Article in English | MEDLINE | ID: mdl-37608601

ABSTRACT

Mechanistic insight into ageing may empower prolonging the lifespan of humans; however, a complete understanding of this process is still lacking despite a plethora of ageing theories. In order to address this, we investigated the association of lifespan with eight phenotypic traits, that is, litter size, body mass, female and male sexual maturity, somatic mutation, heart, respiratory, and metabolic rate. In support of the somatic mutation theory, we analysed 15 mammalian species and their whole-genome sequencing deriving somatic mutation rate, which displayed the strongest negative correlation with lifespan. All remaining phenotypic traits showed almost equivalent strong associations across this mammalian cohort, however, resting heart rate explained additional variance in lifespan. Integrating somatic mutation and resting heart rate boosted the prediction of lifespan, thus highlighting that resting heart rate may either directly influence lifespan, or represents an epiphenomenon for additional lower-level mechanisms, for example, metabolic rate, that are associated with lifespan.


Subject(s)
Aging , Longevity , Humans , Animals , Male , Female , Aging/genetics , Longevity/genetics , Phenotype , Mutation/genetics , Mammals
2.
J Biol Chem ; 296: 100366, 2021.
Article in English | MEDLINE | ID: mdl-33545176

ABSTRACT

Reliable measurement of ligand binding to cell surface receptors is of outstanding biological and pharmacological importance. Resonance energy transfer-based assays are powerful approaches to achieve this goal, but the currently available methods are hindered by the necessity of receptor tagging, which can potentially alter ligand binding properties. Therefore, we developed a tag-free system to measure ligand‒receptor interactions in live cells using the Gaussia luciferase (GLuc) as a bioluminescence resonance energy transfer donor. GLuc is as small as the commonly applied Nanoluciferase but has enhanced brightness, and its proper substrate is the frequently used coelenterazine. In our assay, bystander bioluminescence resonance energy transfer is detected between a GLuc-based extracellular surface biosensor and fluorescent ligands bound to their unmodified receptors. The broad spectrum of applications includes equilibrium and kinetic ligand binding measurements for both labeled and competitive unlabeled ligands, and the assay can be utilized for different classes of plasma membrane receptors. Furthermore, the assay is suitable for high-throughput screening, as evidenced by the identification of novel α1 adrenergic receptor ligands. Our data demonstrate that GLuc-based biosensors provide a simple, sensitive, and cost-efficient platform for drug characterization and development.


Subject(s)
Bioluminescence Resonance Energy Transfer Techniques/methods , Luciferases/chemistry , Luciferases/metabolism , Biological Assay , Cell Membrane/metabolism , Energy Transfer , HEK293 Cells , Humans , Kinetics , Ligands , Protein Binding , Protein Transport , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...