Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Imaging Radiat Oncol ; 25: 100419, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36875326

ABSTRACT

Background and purpose: Deep inspiration breath-hold (DIBH) is a technique that is widely utilised to spare the heart and lungs during breast radiotherapy. In this study, a method was developed to validate directly the intrafraction accuracy of DIBH during breast volumetric modulated arc therapy (VMAT) via internal chest wall (CW) monitoring. Materials and methods: In-house software was developed to automatically extract and compare the treatment position of the CW in cine-mode electronic portal image device (EPID) images with the planned CW position in digitally reconstructed radiographs (DRR) for breast VMAT treatments. Feasibility of this method was established by evaluating the percentage of total dose delivered to the target volume when the CW was sufficiently visible for monitoring. Geometric accuracy of the approach was quantified by applying known displacements to an anthropomorphic thorax phantom. The software was used to evaluate (offline) the geometric treatment accuracy for ten patients treated using real-time position management (RPM)-guided DIBH. Results: The CW could be monitored within the tangential sub-arcs which delivered a median 89% (range 73% to 97%) of the dose to target volume. The phantom measurements showed a geometric accuracy within 1 mm, with visual inspection showing good agreement between the software-derived and user-determined CW positions. For the RPM-guided DIBH treatments, the CW was found to be within ±5 mm of the planned position in 97% of EPID frames in which the CW was visible. Conclusion: An intrafraction monitoring method with sub-millimetre accuracy was successfully developed to validate target positioning during breast VMAT DIBH.

2.
Radiat Oncol ; 14(1): 93, 2019 Jun 03.
Article in English | MEDLINE | ID: mdl-31159840

ABSTRACT

BACKGROUND: Liver tumors are subject to motion with respiration, which is typically accounted for by increasing the target volume. The prescription dose is often reduced to keep the mean liver dose under a threshold level to limit the probability of radiation induced liver toxicity. A retrospective planning study was performed to determine the potential clinical gains of removal of respiratory motion from liver SABR treatment volumes, which may be achieved with gating or tumor tracking. METHODS: Twenty consecutive liver SABR patients were analysed. The treated PTV included the GTV in all phases of respiration (ITV) with a 5 mm margin. The goal prescription was 50Gy/5# (BED 100 Gy10) but was reduced by 2.5 Gy increments to meet liver dose constraints. Elimination of motion was modelled by contouring the GTV in the expiration phase only, with a 5 mm PTV margin. All patients were replanned using the no-motion PTV and tumor dose was escalated to higher prescription levels where feasible given organ-at-risk constraints. For the cohort of patients with metastatic disease, BED gains were correlated to increases in tumour control probability (TCP). The effect of the gradient of the TCP curve on the magnitude of TCP increase was evaluated by repeating the study for an additional prescription structure, 54Gy/3# (BED 151 Gy10). RESULTS: Correlation between PTV size and prescribed dose exists; PTVs encompassing < 10% of the liver could receive the highest prescription level. A monotonically increasing correlation (Spearman's rho 0.771, p = 0.002) between the degree of PTV size reduction and motion vector magnitude was observed for GTV sizes <100cm3. For 11/13 patients initially planned to a decreased prescription, tumor dose escalation was possible (5.4Gy10-21.4Gy10 BED) using the no-motion PTV. Dose escalation in excess of 20 Gy10 increased the associated TCP by 5% or more. A comparison of TCP gains between the two fractionation schedules showed that, for the same patient geometry, the absolute increase in BED was the overarching factor rather than the gradient of the TCP curve. CONCLUSIONS: In liver SABR treatments unable to be prescribed optimal dose due to exceeding mean liver thresholds, eliminating respiratory motion allowed dose escalation in the majority of patients studied and substantially increased TCP.


Subject(s)
Liver Neoplasms/radiotherapy , Radiosurgery/methods , Respiration , Four-Dimensional Computed Tomography , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Motion , Radiographic Image Interpretation, Computer-Assisted , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Relative Biological Effectiveness , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...