Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 10(7)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35884951

ABSTRACT

Prior work has demonstrated that murine ovarian explants and isolated ovarian follicles can recapitulate human-like 28-day cycles in vitro with normal patterns of estradiol and progesterone secretion in response to gonadotropin stimulation. The objective of this study was to manipulate the gonadotropin stimulation protocol to mimic polycystic ovary syndrome (PCOS) and assess the resulting changes in ovarian steroidogenesis. A secondary aim of the study was to develop a high-throughput, sensitive, and specific liquid chromatography with tandem mass spectrometry (LC-MS/MS) assay to measure seven steroid hormones (estrone, estradiol, progesterone, testosterone, androstenedione, dehydroepiandrosterone, and dihydrotestosterone) in conditioned culture media. Ovaries were harvested from 12-day-old CD-1 mice and cultured for 28 days, with ovulation induction on culture day 14. Media were supplemented human chorionic gonadotropin (hCG, a luteinizing hormone analog) and follicle stimulating hormone (FSH) at ratios of 1:0 (standard media), 1:1 (physiologic ratio), and 3:1 (PCOS-like ratio). Ovaries cultured in PCOS-like media displayed hyperandrogenism and impaired ovulation, two key features of a PCOS-like phenotype. Taken together, this first-of-its-kind presentation of hormone levels from single tissues creates a map of the enzymatic steps most acutely affected by gonadotropin dysregulation and may provide opportunities for assessing other potential insults in PCOS pathogenesis.

2.
Cancers (Basel) ; 13(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923536

ABSTRACT

The fallopian tube epithelium is the site of origin for a majority of high grade serous ovarian carcinomas (HGSOC). The chemical communication between the fallopian tube and the ovary in the development of HGSOC from the fallopian tube is of interest since the fimbriated ends in proximity of the ovary harbor serous tubal intraepithelial carcinoma (STICs). Epidemiological data indicates that androgens play a role in ovarian carcinogenesis; however, the oncogenic impact of androgen exposure on the fallopian tube, or tubal neoplastic precursor lesions, has yet to be explored. In this report, imaging mass spectrometry identified that testosterone is produced by the ovary when exposed to tumorigenic fallopian tube derived PTEN deficient cells. Androgen exposure increased cellular viability, proliferation, and invasion of murine cell models of healthy fallopian tube epithelium and PAX2 deficient models of the preneoplastic secretory cell outgrowths (SCOUTs). Proliferation and invasion induced by androgen was reversed by co-treatment with androgen receptor (AR) antagonist, bicalutamide. Furthermore, ablation of phosphorylated ERK reversed proliferation, but not invasion. Investigation of two hyperandrogenic rodent models of polycystic ovarian syndrome revealed that peripheral administration of androgens does not induce fallopian proliferation in vivo. These data suggest that tumorigenic lesions in the fallopian tube may induce an androgenic microenvironment proximal to the ovary, which may in turn promote proliferation of the fallopian tube epithelium and preneoplastic lesions.

3.
Tissue Eng Part A ; 26(13-14): 720-732, 2020 07.
Article in English | MEDLINE | ID: mdl-32609070

ABSTRACT

The physical properties of the ovarian extracellular matrix (ECM) regulate the function of ovarian cells, specifically the ability of the ovary to maintain a quiescent primordial follicle pool while allowing a subset of follicles to grow and mature in the estrous cycle. Design of a long-term, cycling artificial ovary has been hindered by the limited information regarding the mechanical properties of the ovary. In particular, differences in the mechanical properties of the two ovarian compartments, the cortex and medulla, have never been quantified. Shear wave (SW) ultrasound elastography is an imaging modality that enables assessment of material properties, such as the mechanical properties, based on the velocity of SWs, and visualization of internal anatomy, when coupled with B-mode ultrasound. We used SW ultrasound elastography to assess whole, ex vivo bovine ovaries. We demonstrated, for the first time, a difference in mechanical properties, as inferred from SW velocity, between the cortex and medulla, as measured along the length (cortex: 2.57 ± 0.53 m/s, medulla: 2.87 ± 0.77 m/s, p < 0.0001) and width (cortex: 2.99 ± 0.81 m/s, medulla: 3.24 ± 0.97 m/s, p < 0.05) and that the spatial distribution and magnitude of SW velocity vary between these two anatomical planes. This work contributes to a larger body of literature assessing the mechanical properties of the ovary and related cells and specialized ECMs and will enable the rational design of biomimetic tissue engineered models and durable bioprostheses. Impact Statement Shear wave (SW) ultrasound elastography can be used to simultaneously assess the material properties and tissue structures when accompanied with B-mode ultrasound. We report a quantitative difference in mechanical properties, as inferred from SW velocity, between the cortex and medulla, with SW velocity being 11.4% and 8.4% higher in the medulla than the cortex when measured along the length and width, respectively. This investigation into the spatial and temporal variation in SW velocity in bovine ovaries will encourage and improve design of more biomimetic scaffolds for ovarian tissue engineering.


Subject(s)
Ovary/cytology , Shear Strength , Animals , Cattle , Elasticity Imaging Techniques , Female , Ultrasonic Waves
4.
Nat Biomed Eng ; 4(5): 574, 2020 05.
Article in English | MEDLINE | ID: mdl-32332996

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nat Biomed Eng ; 4(4): 381-393, 2020 04.
Article in English | MEDLINE | ID: mdl-32251392

ABSTRACT

Engineered male and female biomimetic reproductive tissues are being developed as autonomous in vitro units or as integrated multi-organ in vitro systems to support germ cell and embryo function, and to display characteristic endocrine phenotypic patterns, such as the 28-day human ovulatory cycle. In this Review, we summarize how engineered reproductive tissues facilitate research in reproductive biology, and overview strategies for making engineered reproductive tissues that might eventually allow the restoration of reproductive capacity in patients.


Subject(s)
Genitalia, Female , Genitalia, Male , Reproduction , Tissue Engineering , Biocompatible Materials , Bioprinting , Cell Encapsulation , Female , Genitalia, Female/transplantation , Genitalia, Male/transplantation , Germ Cells , Humans , Hydrogels , Male , Microfluidics , Printing, Three-Dimensional , Testis/transplantation , Tissue Scaffolds , Tissue Transplantation
6.
Acta Biomater ; 99: 121-132, 2019 11.
Article in English | MEDLINE | ID: mdl-31539655

ABSTRACT

The field of 3D bioprinting has rapidly grown, yet the fundamental ability to manipulate material properties has been challenging with current bioink methods. Here, we change bioink properties using our PEG cross-linking (PEGX) bioink method with the objective of optimizing cell viability while retaining control of mechanical properties of the final bioprinted construct. First, we investigate cytocompatible, covalent cross-linking chemistries for bioink synthesis (e.g. Thiol Michael type addition and bioorthogonal inverse electron demand Diels-Alder reaction). We demonstrate these reactions are compatible with the bioink method, which results in high cell viability. The PEGX method is then exploited to optimize extruded cell viability by manipulating bioink gel robustness, characterized by mass flow rate. Below a critical point, cell viability linearly decreases with decreasing flow rates, but above this point, high viability is achieved. This work underscores the importance of building a foundational understanding of the relationships between extrudable bioink properties and cell health post-printing to more efficiently tune material properties for a variety of tissue and organ engineering applications. Finally, we also develop a post-printing, cell-friendly cross-linking strategy utilizing the same reactions used for synthesis. This secondary cross-linking leads to a range of mechanical properties relevant to soft tissue engineering as well as highly viable cell-laden gels stable for over one month in culture. STATEMENT OF SIGNIFICANCE: We demonstrate that a PEG crosslinking bioink method can be used with various cytocompatible, covalent cross-linking reactions: Thiol Michael type addition and tetrazine-norbornene click. The ability to vary bioink chemistry expands candidate polymers, and therefore can expedite development of new bioinks from unique polymers. We confirm post-printed cell viability and are the first to probe, in covalently cross-linked inks, how cell viability is impacted by different flow properties (mass flow rate). Finally, we also present PEG cross-linking as a new method of post-printing cross-linking that improves mechanical properties and stability while maintaining cell viability. By varying the cross-linking reaction, this method can be applicable to many types of polymers/inks for easy adoption by others investigating bioinks and hydrogels.


Subject(s)
Biocompatible Materials/chemistry , Bioprinting/instrumentation , Cross-Linking Reagents/chemistry , Polyethylene Glycols/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Bioprinting/methods , Cell Survival , Click Chemistry , Fibroblasts/cytology , Gelatin/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Hydrogels/chemistry , Norbornanes/chemistry , Printing, Three-Dimensional , Rheology , Stress, Mechanical
7.
Tissue Eng Part A ; 23(21-22): 1274-1282, 2017 11.
Article in English | MEDLINE | ID: mdl-28586292

ABSTRACT

Extracellular vesicles (EVs) are nanometer-scale particles that are secreted by cells and mediate intercellular communication by transferring biomolecules between cells. Harnessing this mechanism for therapeutic biomolecule delivery represents a promising frontier for regenerative medicine and other clinical applications. One challenge to realizing this goal is that to date, our understanding of which factors affect EV uptake by recipient cells remains incomplete. In this study, we systematically investigated such delivery questions in the context of breast cancer cells, which are one of the most well-studied cell types with respect to EV delivery and therefore comprise a facile model system for this investigation. By displaying various targeting peptides on the EV surface, we observed that although displaying GE11 on EVs modestly increased uptake by MCF-7 cells, neuropeptide Y (NPY) display had no effect on uptake by the same cells. In contrast, neurotensin (NTS) and urokinase plasminogen activator (uPA) display reduced EV uptake by MDA-MB-231 cells. Interestingly, EV uptake rate did not depend on the source of the EVs; breast cancer cells demonstrated no increase in uptake on administration of breast cancer-derived EVs in comparison to HEK293FT-derived EVs. Moreover, EV uptake was greatly enhanced by delivery in the presence of polybrene and spinoculation, suggesting that maximal EV uptake rates are much greater than those observed under basal conditions in cell culture. By investigating how the cell's environment might provide cues that impact EV uptake, we also observed that culturing cells on soft matrices significantly enhanced EV uptake, compared to culturing on stiff tissue culture polystyrene. Each of these observations provides insights into the factors impacting EV uptake by breast cancer cells, while also providing a basis of comparison for systematically evaluating and perhaps enhancing EV uptake by various cell types.


Subject(s)
Breast Neoplasms/metabolism , Extracellular Vesicles/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Extracellular Vesicles/drug effects , Female , HEK293 Cells , Hexadimethrine Bromide/pharmacology , Humans , Peptide Library , Receptors, Cell Surface/metabolism , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...