Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Endocrinol ; 24(2): 241-52, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10750025

ABSTRACT

The human has two relaxins, termed H1 and H2, both of which are biologically active and co-expressed in the decidua, placenta and prostate; in the corpus luteum, the main source of circulating relaxin, only the H2 form is expressed. The reasons for this differential expression of the relaxin genes are unknown. The possibility that their 3'-untranslated regions (UTRs) contribute to this differential expression by affecting their mRNA stabilities was investigated. Thus the 3'-UTRs of both relaxin genes were isolated through a combined 3'-rapid amplification of cDNA ends-PCR (RACE-PCR) using poly (A)(+)RNA from human decidua, placenta, prostate and corpus luteum. The sequences obtained for each 3'-UTR were identical in the tissues examined, were AT-rich (72%) and showed 91% homology between relaxin H1 and H2 when maximally aligned to include several gaps, the significance of which is unknown. Relaxin H1 has two, and relaxin H2 has one, poly (A)(+) signal, in addition to one cytoplasmic polyadenylation element 30 nucleotides upstream of this. The mRNA levels of relaxin H1 and H2 in the prostate adenocarcinoma LNCaP.FGC cell line were determined by quantitative competitive RT-PCR. Relaxin H1 had a 10-fold greater number of molecules (approximately 2.5x10(7)) per microgram of total RNA than relaxin H2 (approximately 2.5x10(6)). The stability of relaxin H1 and H2 mRNAs were compared in LNCaP cells treated with the transcription inhibitor actinomycin D (10 mM) for 0, 1, 2, 4, 8, 10, 14, or 24 h. Half-lives of 3.17 days for relaxin H1 mRNA and 11. 4 h for relaxin H2 mRNA were obtained from semi-logarithmic plots. Thus both mRNAs are relatively stable; however, relaxin H1 mRNA is considerably more stable than relaxin H2, at least in LNCaP cells. This difference in their mRNA stability may partly explain the greater level of expression of relaxin H1 in these cells.


Subject(s)
3' Untranslated Regions/genetics , Relaxin/genetics , Base Sequence , Corpus Luteum/metabolism , Dactinomycin/pharmacology , Decidua/metabolism , Extraembryonic Membranes/metabolism , Female , Gene Expression Regulation , Humans , Male , Molecular Sequence Data , Placenta/metabolism , Polymerase Chain Reaction/methods , Pregnancy , Prostate/metabolism , Protein Precursors/genetics , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Sequence Homology, Nucleic Acid , Transcription, Genetic/drug effects
2.
J Mol Endocrinol ; 23(3): 355-65, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10601981

ABSTRACT

Relaxins are known endocrine and autocrine/paracrine hormones that play a major role in reproduction. In the human there are two relaxin genes, H1 and H2 which share 90% sequence homology within their coding region. The biological and evolutionary significance of two highly homologous and biologically active human relaxins is unknown. In order to achieve a better understanding of the regulatory mechanisms involved in the differential expression of these two genes and to gain insight into their role(s) in the preterm premature rupture of the membranes, we have investigated the properties of their 5'-upstream regions and mapped them both by radiation hybrid and breakpoint mapping into the same chromosome 9p24.1 locus. The 5' ends of these relaxin genes could be divided into a proximal highly homologous segment and a distal non-homologous region. Within the proximal region are contained several putative regulatory elements common to both genes, suggesting a similar regulatory mechanism. The clustering of the relaxin genes within the same chromosomal locus suggests that these genes may be under a common regulation. On the other hand, a distinct gene-specific regulation may also exist for the individual relaxin genes since cis elements specific to each gene were identified at their 5' ends. Moreover, the observed divergence at the distal region of their 5'-upstream sequences may provide the structural features that act as gene-specific transcription regulators. Since the two genes are highly homologous in both their coding and flanking regions, the divergence at the distal region of their 5' ends may be important in the regulation of these genes and in their involvement in the pathology of preterm birth.


Subject(s)
Chromosome Breakage/genetics , Chromosomes, Human, Pair 9/genetics , Promoter Regions, Genetic/genetics , Relaxin/genetics , 5' Untranslated Regions/genetics , Base Sequence , Cell Line , Cloning, Molecular , Female , Fetal Membranes, Premature Rupture/genetics , Humans , Hybrid Cells , In Situ Hybridization, Fluorescence , Male , Molecular Sequence Data , Multigene Family/genetics , Physical Chromosome Mapping , Pregnancy , Response Elements/genetics , TATA Box/genetics , Translocation, Genetic/genetics
3.
J Endocrinol ; 145(3): 441-8, 1995 Jun.
Article in English | MEDLINE | ID: mdl-7636427

ABSTRACT

The two human relaxin genes termed H1 and H2 are expressed in the choriodecidua and placenta and have been proposed to act via specific receptors as local modulators of collagenolysis in the fetal membranes. Such receptors have been inferred, but not demonstrated, from studies of the effect of adding exogenous relaxin to these tissues. Thus conditions were optimized for the binding of 32P-labelled human relaxin H2 to membrane-enriched particulate fractions of human fetal membranes, amnion and chorion, with adhering decidua. The membrane protein concentration was optimal at 250 micrograms, when incubated at 27 degrees C for 60 min, at pH 7.5 with Mn2+ and Mg2+ ion concentrations of 2.0 mM. Incubation of membrane particulate fractions with increasing amounts of labelled relaxin H2 suggested the presence of a single class of binding sites with an affinity constant (Ka) of 2.15 nM. The binding was primarily to the chorion and decidua with very little to the amnion layer. The competition for binding of the 32P-labelled human relaxin H2 with unlabelled relaxin H2 gave an IC50 of 28 pM, while an IC50 of 60 pM and 280 pM was obtained for relaxin H1 and porcine relaxin respectively. In contrast, unlabelled guinea-pig relaxin inhibited this binding by only 10% even at a 1000-fold greater concentration than H2, and human recombinant insulin failed to inhibit even at a million-fold concentration of unlabelled relaxin H2. Relaxins H2 and H1 can readily displace the binding of either 32P-labelled human relaxins H1 or H2 and gave very similar displacement curves.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Extraembryonic Membranes/metabolism , Relaxin/metabolism , Female , Humans , Phosphorylation , Protein Binding , Receptors, G-Protein-Coupled , Receptors, Peptide/metabolism , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...