Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurochem Int ; 56(6-7): 829-33, 2010.
Article in English | MEDLINE | ID: mdl-20307616

ABSTRACT

Gliomas are the most important group of malignant primary brain tumors and one of the most aggressive forms of cancer. During the last years, several studies have demonstrated that cannabinoids induce apoptosis of glioma cells and inhibit angiogenesis of gliomas in vivo. As the effects of cannabinoids rely on CB(1) and CB(2) receptors activation, the aim of the present study was to investigate both receptors protein expression in cellular membrane homogenates of human glial tumors using specific antibodies raised against these proteins. Additionally, we studied the functionality of the cannabinoid receptors in glioblastomas by using WIN 55,212-2 stimulated [(35)S]GTPgammaS binding. Western blot analysis showed that CB(1) receptor immunoreactivity was significantly lower in glioblastoma multiforme (-43%, n=10; p<0.05) than in normal post-mortem brain tissue (n=16). No significant differences were found for astrocytoma (n=6) and meningioma (n=8) samples. Conversely, CB(2) receptor immunoreactivity was significantly greater in membranes of glioblastoma multiforme (765%, n=9; p<0.05) and astrocytoma (471%, n=4; p<0.05) than in control brain tissue (n=10). Finally, the maximal stimulation of [(35)S]GTPgammaS binding by WIN 55,212-2 was significantly lower in glioblastomas (134+/-4%) than in control membranes (183+/-2%; p<0.05). The basal [(35)S]GTPgammaS binding and the EC(50) values were not significantly different between both groups. The present results demonstrate opposite changes in CB(1) and CB(2) receptor protein expression in human gliomas. These changes may be of interest for further research about the therapeutic effects of cannabinoids in glial tumors.


Subject(s)
Brain Neoplasms/chemistry , Glioma/chemistry , Receptor, Cannabinoid, CB1/analysis , Receptor, Cannabinoid, CB2/analysis , Adult , Aged , Astrocytoma/chemistry , Benzoxazines/pharmacology , Blotting, Western , Brain Chemistry , Cannabinoids/pharmacology , Cell Membrane/chemistry , Female , Glioblastoma/chemistry , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Humans , Male , Meningioma/chemistry , Middle Aged , Morpholines/pharmacology , Naphthalenes/pharmacology , Receptor, Cannabinoid, CB1/drug effects , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/drug effects , Receptor, Cannabinoid, CB2/metabolism , Sulfur Radioisotopes
2.
Neurochem Int ; 52(1-2): 230-4, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17624626

ABSTRACT

Glial tumours are the most common type of brain neoplasm in humans. Tumour classification and grading represent key factors for patient management. However, current grading schemes are still limited by subjective histological criteria. In this context, gliosis has been linked to increases in monoamine oxidase B (MAO-B) activity. Thus, in the present study, MAO-B activity in membranes of glial tumours (n=20), meningiomas (n=12) and non-pathological human brains (n=15) was quantified by [14C]PEA oxidation. MAO-B activity was significantly greater in glioblastoma multiformes than in postmortem control brains (p<0.01) or meningiomas (p<0.001). There were no significant differences in MAO-B activity between glioblastoma multiformes (n=11) and low-grade astrocytomas (n=3) or anaplastic astrocytomas (n=6). In conclusion, the present results demonstrate a significant and selective increase in MAO-B activity in human gliomas when compared with meningiomas or non-tumoural tissue. These results suggest that the quantification of MAO-B activity may be a useful diagnostic tool for differentiating glial tumours from other types of brain tumours or surrounding normal brain tissue.


Subject(s)
Brain Neoplasms/enzymology , Glioma/enzymology , Monoamine Oxidase/metabolism , Adult , Aged , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...