Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 222
Filter
2.
JAMA Neurol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857029

ABSTRACT

Importance: An accurate prognosis is especially pertinent in mild cognitive impairment (MCI), when individuals experience considerable uncertainty about future progression. Objective: To evaluate the prognostic value of tau positron emission tomography (PET) to predict clinical progression from MCI to dementia. Design, Setting, and Participants: This was a multicenter cohort study with external validation and a mean (SD) follow-up of 2.0 (1.1) years. Data were collected from centers in South Korea, Sweden, the US, and Switzerland from June 2014 to January 2024. Participant data were retrospectively collected and inclusion criteria were a baseline clinical diagnosis of MCI; longitudinal clinical follow-up; a Mini-Mental State Examination (MMSE) score greater than 22; and available tau PET, amyloid-ß (Aß) PET, and magnetic resonance imaging (MRI) scan less than 1 year from diagnosis. A total of 448 eligible individuals with MCI were included (331 in the discovery cohort and 117 in the validation cohort). None of these participants were excluded over the course of the study. Exposures: Tau PET, Aß PET, and MRI. Main Outcomes and Measures: Positive results on tau PET (temporal meta-region of interest), Aß PET (global; expressed in the standardized metric Centiloids), and MRI (Alzheimer disease [AD] signature region) was assessed using quantitative thresholds and visual reads. Clinical progression from MCI to all-cause dementia (regardless of suspected etiology) or to AD dementia (AD as suspected etiology) served as the primary outcomes. The primary analyses were receiver operating characteristics. Results: In the discovery cohort, the mean (SD) age was 70.9 (8.5) years, 191 (58%) were male, the mean (SD) MMSE score was 27.1 (1.9), and 110 individuals with MCI (33%) converted to dementia (71 to AD dementia). Only the model with tau PET predicted all-cause dementia (area under the receiver operating characteristic curve [AUC], 0.75; 95% CI, 0.70-0.80) better than a base model including age, sex, education, and MMSE score (AUC, 0.71; 95% CI, 0.65-0.77; P = .02), while the models assessing the other neuroimaging markers did not improve prediction. In the validation cohort, tau PET replicated in predicting all-cause dementia. Compared to the base model (AUC, 0.75; 95% CI, 0.69-0.82), prediction of AD dementia in the discovery cohort was significantly improved by including tau PET (AUC, 0.84; 95% CI, 0.79-0.89; P < .001), tau PET visual read (AUC, 0.83; 95% CI, 0.78-0.88; P = .001), and Aß PET Centiloids (AUC, 0.83; 95% CI, 0.78-0.88; P = .03). In the validation cohort, only the tau PET and the tau PET visual reads replicated in predicting AD dementia. Conclusions and Relevance: In this study, tau-PET showed the best performance as a stand-alone marker to predict progression to dementia among individuals with MCI. This suggests that, for prognostic purposes in MCI, a tau PET scan may be the best currently available neuroimaging marker.

4.
Article in English | MEDLINE | ID: mdl-38861183

ABSTRACT

INTRODUCTION: Amyloid-ß (Aß) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The Fluorine-18-Fluorodeoxyglucose ([18F]FDG) PET scan tracks cerebral glucose metabolism, correlated with synaptic dysfunction and disease progression and is complementary for AD diagnosis. Dual-scan acquisitions of amyloid PET allows the possibility to use early-phase amyloid-PET as a biomarker for neurodegeneration, proven to have a good correlation to [18F]FDG PET. The aim of this study was to evaluate the added value of synthesizing the later from the former through deep learning (DL), aiming at reducing the number of PET scans, radiation dose, and discomfort to patients. METHODS: A total of 166 subjects including cognitively unimpaired individuals (N = 72), subjects with mild cognitive impairment (N = 73) and dementia (N = 21) were included in this study. All underwent T1-weighted MRI, dual-phase amyloid PET scans using either Fluorine-18 Florbetapir ([18F]FBP) or Fluorine-18 Flutemetamol ([18F]FMM), and an [18F]FDG PET scan. Two transformer-based DL models called SwinUNETR were trained separately to synthesize the [18F]FDG from early phase [18F]FBP and [18F]FMM (eFBP/eFMM). A clinical similarity score (1: no similarity to 3: similar) was assessed to compare the imaging information obtained by synthesized [18F]FDG as well as eFBP/eFMM to actual [18F]FDG. Quantitative evaluations include region wise correlation and single-subject voxel-wise analyses in comparison with a reference [18F]FDG PET healthy control database. Dice coefficients were calculated to quantify the whole-brain spatial overlap between hypometabolic ([18F]FDG PET) and hypoperfused (eFBP/eFMM) binary maps at the single-subject level as well as between [18F]FDG PET and synthetic [18F]FDG PET hypometabolic binary maps. RESULTS: The clinical evaluation showed that, in comparison to eFBP/eFMM (average of clinical similarity score (CSS) = 1.53), the synthetic [18F]FDG images are quite similar to the actual [18F]FDG images (average of CSS = 2.7) in terms of preserving clinically relevant uptake patterns. The single-subject voxel-wise analyses showed that at the group level, the Dice scores improved by around 13% and 5% when using the DL approach for eFBP and eFMM, respectively. The correlation analysis results indicated a relatively strong correlation between eFBP/eFMM and [18F]FDG (eFBP: slope = 0.77, R2 = 0.61, P-value < 0.0001); eFMM: slope = 0.77, R2 = 0.61, P-value < 0.0001). This correlation improved for synthetic [18F]FDG (synthetic [18F]FDG generated from eFBP (slope = 1.00, R2 = 0.68, P-value < 0.0001), eFMM (slope = 0.93, R2 = 0.72, P-value < 0.0001)). CONCLUSION: We proposed a DL model for generating the [18F]FDG from eFBP/eFMM PET images. This method may be used as an alternative for multiple radiotracer scanning in research and clinical settings allowing to adopt the currently validated [18F]FDG PET normal reference databases for data analysis.

5.
Neurodegener Dis ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38763140

ABSTRACT

INTRODUCTION: Subjective Cognitive Decline (SCD) is characterized by subjective cognitive concerns without objective cognitive impairment and is considered a risk factor for cognitive decline and dementia. However, most SCD patients will not develop neurodegenerative disorders, yet they may suffer from minor psychiatric, neurological, or somatic comorbidities. The aim of the present study is to provide a taxonomy of the heterogeneous SCD entity by isolating homogenous SCD subgroups with specific clinical features and cognitive trajectoriesand to conduct a preliminary validation using data from a memory clinic sample. METHODS: Participants were fifty-five SCD individuals consecutively recruited at the Geneva Memory Center. Based on clinical reports, they were classified into three clinically pre-defined subgroups: (i) those with psychological or psychiatric comorbidities (Psy), (ii) those with somatic comorbidities (SomCom), (iii) and those with no apparent cause (NAC). Baseline demographics, clinical, cognitive, and biomarker differences among the SCD subgroups were assessed. Longitudinal cognitive changes (average 3 years follow-up) were modeled using a linear mixed model. RESULTS: Out of the 55 SCD cases, 16 were SomCom, 18 Psy, and 21 NAC. 47% were female, mean age was 71 years. We observed higher frequency of APOE ε4 carriers in NAC (53%) compared to SomCom (14%) and Psy (0%, P=0.023) and lower level of plasma Aß42 in NAC (6.8±1.0) compared to SomCom (8.4±1.1; P=0.031). SomCom subjects were older (74 years) than Psy (67 years, P=0.011), and had greater medial temporal lobe atrophy (1.0±1.0) than Psy (0.2±0.6) and NAC (0.4±0.5, P=0.005). SomCom have worse episodic memory performances (14.5±3.5) than Psy (15.8±0.4) and NAC (15.8±0.7, P=0.032). We observed a slightly steeper, yet not statistically significant, cognitive decline in NAC (ß=-0.48) compared to Psy (ß=-0.28) and SomCom (ß=-0.24). CONCLUSIONS: NAC feature higher proportion of APOE ε4 carriers, lower plasma Aß42 and a trend towards steeper cognitive decline than SomCom and Psy. Taken together, these findings suggest that NAC are at higher risk of cognitive decline due to AD. The proposed clinical taxonomy might be implemented in clinical practice to identify SCD at higher risk. However, such taxonomy should be tested on an independent cohort with larger sample size.

6.
Alzheimers Res Ther ; 16(1): 110, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755703

ABSTRACT

BACKGROUND: Plasma biomarkers of Alzheimer's disease (AD) pathology, neurodegeneration, and neuroinflammation are ideally suited for secondary prevention programs in self-sufficient persons at-risk of dementia. Plasma biomarkers have been shown to be highly correlated with traditional imaging biomarkers. However, their comparative predictive value versus traditional AD biomarkers is still unclear in cognitively unimpaired (CU) subjects and with mild cognitive impairment (MCI). METHODS: Plasma (Aß42/40, p-tau181, p-tau231, NfL, and GFAP) and neuroimaging (hippocampal volume, centiloid of amyloid-PET, and tau-SUVR of tau-PET) biomarkers were assessed at baseline in 218 non-demented subjects (CU = 140; MCI = 78) from the Geneva Memory Center. Global cognition (MMSE) was evaluated at baseline and at follow-ups up to 5.7 years. We used linear mixed-effects models and Cox proportional-hazards regression to assess the association between biomarkers and cognitive decline. Lastly, sample size calculations using the linear mixed-effects models were performed on subjects positive for amyloid-PET combined with tau-PET and plasma biomarker positivity. RESULTS: Cognitive decline was significantly predicted in MCI by baseline plasma NfL (ß=-0.55), GFAP (ß=-0.36), hippocampal volume (ß = 0.44), centiloid (ß=-0.38), and tau-SUVR (ß=-0.66) (all p < 0.05). Subgroup analysis with amyloid-positive MCI participants also showed that only NfL and GFAP were the only significant predictors of cognitive decline among plasma biomarkers. Overall, NfL and tau-SUVR showed the highest prognostic values (hazard ratios of 7.3 and 5.9). Lastly, we demonstrated that adding NfL to the inclusion criteria could reduce the sample sizes of future AD clinical trials by up to one-fourth in subjects with amyloid-PET positivity or by half in subjects with amyloid-PET and tau-PET positivity. CONCLUSIONS: Plasma NfL and GFAP predict cognitive decline in a similar manner to traditional imaging techniques in amyloid-positive MCI patients. Hence, even though they are non-specific biomarkers of AD, both can be implemented in memory clinic workups as important prognostic biomarkers. Likewise, future clinical trials might employ plasma biomarkers as additional inclusion criteria to stratify patients at higher risk of cognitive decline to reduce sample sizes and enhance effectiveness.


Subject(s)
Amyloid beta-Peptides , Biomarkers , Cognitive Dysfunction , Positron-Emission Tomography , tau Proteins , Humans , Male , Female , Biomarkers/blood , Cognitive Dysfunction/blood , Cognitive Dysfunction/diagnostic imaging , Aged , tau Proteins/blood , Amyloid beta-Peptides/blood , Middle Aged , Neuroimaging/methods , Neurofilament Proteins/blood , Hippocampus/diagnostic imaging , Hippocampus/pathology , Peptide Fragments/blood , Glial Fibrillary Acidic Protein/blood
7.
Neurobiol Aging ; 139: 1-4, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38574424

ABSTRACT

We assessed the relationship of gamma oscillations with tau deposition in Alzheimer's disease (AD) and other cognitive diseases, as both are altered during the disease course and relate to neurodegeneration. We retrospectively analyzed data from 7 AD, tau positive patients and 9 tau negative patients, who underwent cerebral amyloid PET and tau PET, and EEG within 12 months. Relative gamma power was higher in tau positive (AD) patients than in tau negative patients (p < .05). In tau positive AD patients, tau burden was associated with a linear increase in gamma power (p < .05), while no association was present in the tau negative group nor with amyloid-ß burden in either group. Thus, increase in the gamma power might represent a novel biomarker for tau driven neurodegeneration.


Subject(s)
Alzheimer Disease , Biomarkers , Positron-Emission Tomography , tau Proteins , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Humans , tau Proteins/metabolism , Male , Aged , Female , Retrospective Studies , Biomarkers/metabolism , Amyloid beta-Peptides/metabolism , Electroencephalography , Aged, 80 and over , Cerebral Cortex/metabolism , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Gamma Rhythm/physiology , Middle Aged
8.
EJNMMI Res ; 14(1): 35, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573556

ABSTRACT

BACKGROUND: This case report presents a patient with progressive memory loss and choreiform movements. CASE PRESENTATION: Neuropsychological tests indicated multi-domain amnestic mild cognitive impairment (aMCI), and neurological examination revealed asymmetrical involuntary hyperkinetic movements. Imaging studies showed severe left-sided atrophy and hypometabolism in the left frontal and temporoparietal cortex. [18F]Flortaucipir PET exhibited moderately increased tracer uptake in hypometabolic areas. The diagnosis initially considered Alzheimer's disease (AD), frontotemporal degeneration (FTD), and corticobasal degeneration (CBD), cerebral hemiatrophy syndrome, but imaging and cerebrospinal fluid analysis excluded AD and suggested fused-in-sarcoma-associated FTD (FTLD-FUS), a subtype of the behavioural variant of FTD. CONCLUSIONS: Our case highlights that despite the lack of specific FUS biomarkers the combination of clinical features and neuroimaging biomarkers can guide choosing the most likely differential diagnosis in a complex neurological case. Imaging in particular allowed an accurate measure of the topography and severity of neurodegeneration and the exclusion of AD-related pathology.

9.
Parkinsonism Relat Disord ; 122: 106061, 2024 May.
Article in English | MEDLINE | ID: mdl-38430691

ABSTRACT

INTRODUCTION: Early-onset dementia with Lewy bodies (EO-DLB) is associated with rapid cognitive decline and severe neuropsychiatric symptoms at onset. METHODS: Using FDG-PET imaging for 62 patients (21 EO-DLB, 41 LO (late-onset)-DLB), we explored brain hypometabolism, and metabolic connectivity in the whole-brain network and resting-state networks (RSNs). We also evaluated the spatial association between brain hypometabolism and neurotransmitter pathways topography. RESULTS: Direct comparisons between the two clinical subgroups showed that EO-DLB was characterized by a lower metabolism in posterior cingulate/precuneus and occipital cortex. Metabolic connectivity analysis revealed significant alterations in posterior regions in both EO-DLB and LO-DLB. The EO-DLB, however, showed more severe loss of connectivity between occipital and parietal nodes and hyperconnectivity between frontal and cerebellar nodes. Spatial topography association analysis indicated significant correlations between neurotransmitter maps (i.e. acetylcholine, GABA, serotonin, dopamine) and brain hypometabolism in both EO and LO-DLB, with significantly higher metabolic correlation in the presynaptic serotonergic system for EO-DLB, supporting its major dysfunction. CONCLUSIONS: Our study revealed greater brain hypometabolism and loss of connectivity in posterior brain region in EO- than LO-DLB. Serotonergic mapping emerges as a relevant factor for further investigation addressing clinical differences between DLB subtypes.


Subject(s)
Brain , Lewy Body Disease , Neurotransmitter Agents , Positron-Emission Tomography , Humans , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/metabolism , Male , Female , Aged , Brain/diagnostic imaging , Brain/metabolism , Neurotransmitter Agents/metabolism , Middle Aged , Aged, 80 and over , Age of Onset , Brain Mapping , Nerve Net/diagnostic imaging , Nerve Net/metabolism , Fluorodeoxyglucose F18 , Neural Pathways/diagnostic imaging , Neural Pathways/metabolism
10.
Neuroimage Clin ; 42: 103592, 2024.
Article in English | MEDLINE | ID: mdl-38493585

ABSTRACT

A proportion of patients clinically diagnosed with Parkinson's disease (PD) can have a 123I-FP-CIT-SPECT scan without evidence of dopaminergic deficit (SWEDD), generating a debate about the underlying biological mechanisms. This study investigated differences in clinical features, 123I-FP-CIT binding, molecular connectivity, as well as clinical and imaging progression between SWEDD and PD patients. We included 36 SWEDD, 49 de novo idiopathic PD, and 49 healthy controls with 123I-FP-CIT-SPECT from the Parkinson's Progression Markers Initiative. Clinical and imaging 2-year follow-ups were available for 27 SWEDD and 40 PD. Regional-based and voxel-wise analysis assessed dopaminergic integrity in dorsal and ventral striatal, as well as extrastriatal regions, at baseline and follow-up. Molecular connectivity analyses evaluated dopaminergic pathways. Spatial correlation analyses tested whether 123I-FP-CIT-binding alterations would also pertain to the serotoninergic system. SWEDD and PD patients showed comparable symptoms at baseline, except for hyposmia, which was more severe for PD. PD showed significantly lower striatal and extrastriatal 123I-FP-CIT-binding compared to SWEDD and controls. SWEDD exhibited lower binding than controls in striatal regions, insula, and olfactory cortex. Both PD and SWEDD showed extensive altered connectivity of dopaminergic pathways, however, with major impairment in the mesocorticolimbic system for SWEDD. Motor symptoms and dopaminergic deficits worsened after 2 years for PD only. The limited dopaminergic impairment and its stability over time observed for SWEDD, as well as the presence of extrastriatal 123I-FP-CIT binding alterations and prevalent mesocorticolimbic connectivity impairment, suggest other mechanisms contributing to SWEDD pathophysiology.


Subject(s)
Parkinson Disease , Tomography, Emission-Computed, Single-Photon , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism , Male , Female , Middle Aged , Aged , Tomography, Emission-Computed, Single-Photon/methods , Tropanes , Disease Progression , Dopamine/metabolism , Brain/diagnostic imaging , Brain/metabolism
11.
Can J Neurol Sci ; : 1-13, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38433571

ABSTRACT

PET imaging is increasingly recognized as an important diagnostic tool to investigate patients with cognitive disturbances of possible neurodegenerative origin. PET with 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG), assessing glucose metabolism, provides a measure of neurodegeneration and allows a precise differential diagnosis among the most common neurodegenerative diseases, such as Alzheimer's disease, frontotemporal dementia or dementia with Lewy bodies. PET tracers specific for the pathological deposits characteristic of different neurodegenerative processes, namely amyloid and tau deposits typical of Alzheimer's Disease, allow the visualization of these aggregates in vivo. [18F]FDG and amyloid PET imaging have reached a high level of clinical validity and are since 2022 investigations that can be offered to patients in standard clinical care in most of Canada.This article will briefly review and summarize the current knowledge on these diagnostic tools, their integration into diagnostic algorithms as well as perspectives for future developments.

12.
Ann Clin Transl Neurol ; 11(5): 1236-1249, 2024 May.
Article in English | MEDLINE | ID: mdl-38553802

ABSTRACT

OBJECTIVES: Mild cognitive impairment presenting with an amnestic syndrome (aMCI) and amyloid positivity is considered due to AD. Many subjects, however, can show an overall very slow progression relevant for differential diagnosis, prognosis, and treatment. This study assessed PET biomarkers, including brain glucose metabolism, tau, and amyloid load, in a series of comparable aMCI at baseline, clinically evaluated at follow-up. METHODS: We included 72 aMCI subjects from Geneva Memory Center (N = 31) and ADNI cohorts (N = 41), selected based on available FDG-PET, tau-PET, amyloid-PET, and clinical follow-up (2.3 years ± 1.2). A data-driven algorithm classified brain metabolic patterns into subtypes that were then compared for clinical and PET biomarker measures and cognitive decline. Voxel-wise comparisons were performed both with FDG-PET and tau-PET data. RESULTS: The algorithm classified three metabolic subtypes, namely "Hippocampal-sparing with cortical hypometabolism" (Type1; N = 27), "Hippocampal and cortical hypometabolism" (Type 2; N = 23), and "Medial temporal hypometabolism" (Type 3; N = 22). Amyloid positivity and tau accumulation in the medial temporal and neocortical regions characterized Type 1 and Type 2, whereas Type 3 showed no significant tau pathology, variable amyloid positivity, and stability at follow-up. All tau-positive patients, independently of the FDG-based subtype, showed faster cognitive decline. INTERPRETATION: aMCI subjects can differ in metabolic patterns, tau and amyloid pathology, and clinical progression. Here, we complemented with PET tau biomarker the specific brain hypometabolic patterns at the individual level in the prodromal phase, contributing to the patient's classification. Tau PET is the most accurate biomarker in supporting or excluding the AD diagnosis in aMCI across metabolic subtypes and also predicting the risk of decline.


Subject(s)
Amnesia , Cognitive Dysfunction , Fluorodeoxyglucose F18 , Positron-Emission Tomography , tau Proteins , Humans , Male , Female , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/diagnosis , Aged , tau Proteins/metabolism , Amnesia/diagnostic imaging , Amnesia/metabolism , Prognosis , Aged, 80 and over , Middle Aged , Disease Progression , Brain/diagnostic imaging , Brain/metabolism , Biomarkers/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/diagnosis , Follow-Up Studies
13.
J Alzheimers Dis ; 98(3): 1001-1016, 2024.
Article in English | MEDLINE | ID: mdl-38489181

ABSTRACT

Background: Low-dose radiation therapy (LD-RT) has demonstrated in preclinical and clinical studies interesting properties in the perspective of targeting Alzheimer's disease (AD), including anti-amyloid and anti-inflammatory effects. Nevertheless, studies were highly heterogenous with respect to total doses, fractionation protocols, sex, age at the time of treatment and delay post treatment. Recently, we demonstrated that LD-RT reduced amyloid peptides and inflammatory markers in 9-month-old TgF344-AD (TgAD) males. Objective: As multiple studies demonstrated a sex effect in AD, we wanted to validate that LD-RT benefits are also observed in TgAD females analyzed at the same age. Methods: Females were bilaterally treated with 2 Gy×5 daily fractions, 2 Gy×5 weekly fractions, or 10 fractions of 1 Gy delivered twice a week. The effect of each treatment on amyloid load and inflammation was evaluated using immunohistology and biochemistry. Results: A daily treatment did not affect amyloid and reduced only microglial-mediated inflammation markers, the opposite of the results obtained in our previous male study. Moreover, altered fractionations (2 Gy×5 weekly fractions or 10 fractions of 1 Gy delivered twice a week) did not influence the amyloid load or neuroinflammatory response in females. Conclusions: A daily treatment consequently appears to be the most efficient for AD. This study also shows that the anti-amyloid and anti-inflammatory response to LD-RT are, at least partly, two distinct mechanisms. It also emphasizes the necessity to assess the sex impact when evaluating responses in ongoing pilot clinical trials testing LD-RT against AD.


Subject(s)
Alzheimer Disease , Rats , Male , Female , Animals , Alzheimer Disease/pathology , Microglia/pathology , Disease Models, Animal , Amyloid , Inflammation/radiotherapy , Inflammation/drug therapy , Amyloidogenic Proteins , Anti-Inflammatory Agents/therapeutic use , Amyloid beta-Peptides/therapeutic use
14.
Eur J Nucl Med Mol Imaging ; 51(7): 1891-1908, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38393374

ABSTRACT

Epilepsy is one of the most frequent neurological conditions with an estimated prevalence of more than 50 million people worldwide and an annual incidence of two million. Although pharmacotherapy with anti-seizure medication (ASM) is the treatment of choice, ~30% of patients with epilepsy do not respond to ASM and become drug resistant. Focal epilepsy is the most frequent form of epilepsy. In patients with drug-resistant focal epilepsy, epilepsy surgery is a treatment option depending on the localisation of the seizure focus for seizure relief or seizure freedom with consecutive improvement in quality of life. Beside examinations such as scalp video/electroencephalography (EEG) telemetry, structural, and functional magnetic resonance imaging (MRI), which are primary standard tools for the diagnostic work-up and therapy management of epilepsy patients, molecular neuroimaging using different radiopharmaceuticals with single-photon emission computed tomography (SPECT) and positron emission tomography (PET) influences and impacts on therapy decisions. To date, there are no literature-based praxis recommendations for the use of Nuclear Medicine (NM) imaging procedures in epilepsy. The aims of these guidelines are to assist in understanding the role and challenges of radiotracer imaging for epilepsy; to provide practical information for performing different molecular imaging procedures for epilepsy; and to provide an algorithm for selecting the most appropriate imaging procedures in specific clinical situations based on current literature. These guidelines are written and authorized by the European Association of Nuclear Medicine (EANM) to promote optimal epilepsy imaging, especially in the presurgical setting in children, adolescents, and adults with focal epilepsy. They will assist NM healthcare professionals and also specialists such as Neurologists, Neurophysiologists, Neurosurgeons, Psychiatrists, Psychologists, and others involved in epilepsy management in the detection and interpretation of epileptic seizure onset zone (SOZ) for further treatment decision. The information provided should be applied according to local laws and regulations as well as the availability of various radiopharmaceuticals and imaging modalities.


Subject(s)
Epilepsy , Positron-Emission Tomography , Tomography, Emission-Computed, Single-Photon , Humans , Epilepsy/diagnostic imaging , Positron-Emission Tomography/methods , Positron-Emission Tomography/standards , Nuclear Medicine , Europe
15.
Eur J Nucl Med Mol Imaging ; 51(7): 1876-1890, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38355740

ABSTRACT

PURPOSE: Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017-2022), highlighting methodological shortcomings. METHODS: Studies reporting the diagnostic accuracy values of the molecular imaging techniques (i.e., amyloid-, tau-, [18F]FDG-PETs, DaT-SPECT, and cardiac [123I]-MIBG scintigraphy) in predicting progression from mild cognitive impairment (MCI) to dementia were selected according to the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) method and evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Main eligibility criteria were as follows: (1) ≥ 50 subjects with MCI, (2) follow-up ≥ 3 years, (3) gold standard: progression to dementia or diagnosis on pathology, and (4) measures of prospective accuracy. RESULTS: Sensitivity (SE) and specificity (SP) in predicting progression to dementia, mainly to Alzheimer's dementia were 43-100% and 63-94% for [18F]FDG-PET and 64-94% and 48-93% for amyloid-PET. Longitudinal studies were lacking for less common disorders (Dementia with Lewy bodies-DLB and Frontotemporal lobe degeneration-FTLD) and for tau-PET, DaT-SPECT, and [123I]-MIBG scintigraphy. Therefore, the accuracy values from cross-sectional studies in a smaller sample of subjects (n > 20, also including mild dementia stage) were chosen as surrogate outcomes. DaT-SPECT showed 47-100% SE and 71-100% SP in differentiating Lewy body disease (LBD) from non-LBD conditions; tau-PET: 88% SE and 100% SP in differentiating DLB from Posterior Cortical Atrophy. [123I]-MIBG scintigraphy differentiated LBD from non-LBD conditions with 47-100% SE and 71-100% SP. CONCLUSION: Molecular imaging has a moderate-to-good accuracy in predicting the progression of MCI to Alzheimer's dementia. Longitudinal studies are sparse in non-AD conditions, requiring additional efforts in these settings.


Subject(s)
Cognitive Dysfunction , Dementia , Disease Progression , Humans , Cognitive Dysfunction/diagnostic imaging , Dementia/diagnostic imaging , Molecular Imaging/methods
16.
J Nucl Med ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360050

ABSTRACT

Noninvasive molecular imaging of acute graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation has great potential to detect GvHD at the early stages, aid in grading of the disease, monitor treatment response, and guide therapeutic decisions. Although the specificity of currently available tracers appears insufficient for clinical GvHD diagnosis, recently, several preclinical studies have identified promising new imaging agents targeting one or more biologic processes involved in GvHD pathogenesis, ranging from T-cell activation to tissue damage. In this review, we summarize the different approaches reported to date for noninvasive detection of GvHD using molecular imaging with a specific focus on the use of PET. We discuss possible applications of molecular imaging for the detection of GvHD in the clinical setting, as well as some of the predictable challenges that are faced during clinical translation of these approaches.

17.
Neurology ; 102(6): e208053, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38377442

ABSTRACT

OBJECTIVES: Higher-educated patients with Alzheimer disease (AD) can harbor greater neuropathologic burden than those with less education despite similar symptom severity. In this study, we assessed whether this observation is also present in potential preclinical AD stages, namely in individuals with subjective cognitive decline and clinical features increasing AD likelihood (SCD+). METHODS: Amyloid-PET information ([18F]Flutemetamol or [18F]Florbetaben) of individuals with SCD+, mild cognitive impairment (MCI), and AD were retrieved from the AMYPAD-DPMS cohort, a multicenter randomized controlled study. Group classification was based on the recommendations by the SCD-I and NIA-AA working groups. Amyloid PET images were acquired within 8 months after initial screening and processed with AMYPYPE. Amyloid load was based on global Centiloid (CL) values. Educational level was indexed by formal schooling and subsequent higher education in years. Using linear regression analysis, the main effect of education on CL values was tested across the entire cohort, followed by the assessment of an education-by-diagnostic-group interaction (covariates: age, sex, and recruiting memory clinic). To account for influences of non-AD pathology and comorbidities concerning the tested amyloid-education association, we compared white matter hyperintensity (WMH) severity, cardiovascular events, depression, and anxiety history between lower-educated and higher-educated groups within each diagnostic category using the Fisher exact test or χ2 test. Education groups were defined using a median split on education (Md = 13 years) in a subsample of the initial cohort, for whom this information was available. RESULTS: Across the cohort of 212 individuals with SCD+ (M(Age) = 69.17 years, F 42.45%), 258 individuals with MCI (M(Age) = 72.93, F 43.80%), and 195 individuals with dementia (M(Age) = 74.07, F 48.72%), no main effect of education (ß = 0.52, 95% CI -0.30 to 1.58), but a significant education-by-group interaction on CL values, was found (p = 0.024) using linear regression modeling. This interaction was driven by a negative association of education and CL values in the SCD+ group (ß = -0.11, 95% CI -4.85 to -0.21) and a positive association in the MCI group (ß = 0.15, 95% CI 0.79-5.22). No education-dependent differences in terms of WMH severity and comorbidities were found in the subsample (100 cases with SCD+, 97 cases with MCI, 72 cases with dementia). DISCUSSION: Education may represent a factor oppositely modulating subjective awareness in preclinical stages and objective severity of ongoing neuropathologic processes in clinical stages.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Female , Humans , Male , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/epidemiology , Amyloid , Amyloid beta-Peptides , Amyloidogenic Proteins , Biomarkers , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/epidemiology , Educational Status , Longitudinal Studies , Positron-Emission Tomography , Multicenter Studies as Topic , Randomized Controlled Trials as Topic
18.
Lancet Neurol ; 23(3): 302-312, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38365381

ABSTRACT

The recent commercialisation of the first disease-modifying drugs for Alzheimer's disease emphasises the need for consensus recommendations on the rational use of biomarkers to diagnose people with suspected neurocognitive disorders in memory clinics. Most available recommendations and guidelines are either disease-centred or biomarker-centred. A European multidisciplinary taskforce consisting of 22 experts from 11 European scientific societies set out to define the first patient-centred diagnostic workflow that aims to prioritise testing for available biomarkers in individuals attending memory clinics. After an extensive literature review, we used a Delphi consensus procedure to identify 11 clinical syndromes, based on clinical history and examination, neuropsychology, blood tests, structural imaging, and, in some cases, EEG. We recommend first-line and, if needed, second-line testing for biomarkers according to the patient's clinical profile and the results of previous biomarker findings. This diagnostic workflow will promote consistency in the diagnosis of neurocognitive disorders across European countries.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Europe , Biomarkers , Consensus , Societies, Scientific
19.
Semin Nucl Med ; 54(2): 237-246, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38365546

ABSTRACT

Sex differences in brain physiology and the mechanisms of drug action have been extensively reported. These biological variances, from structure to hormonal and genetic aspects, can profoundly influence healthy functioning and disease mechanisms and might have implications for treatment and drug development. Molecular neuroimaging techniques may help to disclose sex's impact on brain functioning, as well as the neuropathological changes underpinning several diseases. This narrative review summarizes recent lines of evidence based on PET and SPECT imaging, highlighting sex differences in normal conditions and various neurological disorders.


Subject(s)
Nervous System Diseases , Neuroimaging , Female , Humans , Male , Neuroimaging/methods , Brain/diagnostic imaging , Nervous System Diseases/diagnostic imaging , Nervous System Diseases/pathology , Women's Health , Tomography, Emission-Computed, Single-Photon
20.
Case Rep Neurol ; 16(1): 6-17, 2024.
Article in English | MEDLINE | ID: mdl-38179211

ABSTRACT

Introduction: Emotional apathy has recently been identified as a common symptom of long COVID. While recent meta-analyses have demonstrated generalized EEG slowing with the emergence of delta rhythms in patients hospitalized for severe SARS-CoV-2 infection, no EEG study or dopamine transporter scintigraphy (DaTSCAN) has been performed in patients with long COVID presenting with apathy. The objective of this case report was to explore the pathophysiology of neuropsychological symptoms in long COVID. Case Presentation: A 47-year-old patient who developed a long COVID with prominent apathy following an initially clinically mild SARS-CoV-2 infection underwent neuropsychological assessment, cerebral MRI, DaTSCAN, and resting-state high-density EEG 7 months after SARS-CoV-2 infection. The EEG data were compared to those of 21 healthy participants. The patient presented with apathy, cognitive difficulties with dysexecutive syndrome, moderate attentional and verbal episodic memory disturbances, and resolution of premorbid mild gaming disorder, mild mood disturbances, and sleep disturbances. His MRI and DaTSCAN were unremarkable. EEG revealed a complex pattern of oscillatory abnormalities compared to the control group, with a strong increase in whole-scalp delta and beta band activity, as well as a decrease in alpha band activity. Overall, these effects were more prominent in the frontal-central-temporal region. Conclusion: These results suggest widespread changes in EEG oscillatory patterns in a patient with long COVID characterized by neuropsychological complications with prominent apathy. Despite the inherent limitations of a case report, these results suggest dysfunction in the cortical networks involved in motivation and emotion.

SELECTION OF CITATIONS
SEARCH DETAIL
...