Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lasers Med Sci ; 39(1): 140, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38797751

ABSTRACT

Classifying retinal diseases is a complex problem because the early problematic areas of retinal disorders are quite small and conservative. In recent years, Transformer architectures have been successfully applied to solve various retinal related health problems. Age-related macular degeneration (AMD) and diabetic macular edema (DME), two prevalent retinal diseases, can cause partial or total blindness. Diseases therefore require an early and accurate detection. In this study, we proposed Vision Transformer (ViT), Tokens-To-Token Vision Transformer (T2T-ViT) and Mobile Vision Transformer (Mobile-ViT) algorithms to detect choroidal neovascularization (CNV), drusen, and diabetic macular edema (DME), and normal using optical coherence tomography (OCT) images. The predictive accuracies of ViT, T2T-ViT and Mobile-ViT achieved on the dataset for the classification of OCT images are 95.14%, 96.07% and 99.17% respectively. Experimental results obtained from ViT approaches showed that Mobile-ViT have superior performance with regard to classification accuracy in comparison with the others. Overall, it has been observed that ViT architectures have the capacity to classify with high accuracy in the diagnosis of retinal diseases.


Subject(s)
Algorithms , Choroidal Neovascularization , Diabetic Retinopathy , Macular Edema , Retinal Drusen , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Humans , Diabetic Retinopathy/diagnostic imaging , Diabetic Retinopathy/classification , Choroidal Neovascularization/diagnostic imaging , Choroidal Neovascularization/classification , Macular Edema/diagnostic imaging , Macular Edema/classification , Retinal Drusen/diagnostic imaging , Retina/diagnostic imaging , Retina/pathology
2.
J Supercomput ; 79(11): 11797-11826, 2023.
Article in English | MEDLINE | ID: mdl-37304052

ABSTRACT

This study aims to use a machine learning (ML)-based enhanced diagnosis and survival model to predict heart disease and survival in heart failure by combining the cuckoo search (CS), flower pollination algorithm (FPA), whale optimization algorithm (WOA), and Harris hawks optimization (HHO) algorithms, which are meta-heuristic feature selection algorithms. To achieve this, experiments are conducted on the Cleveland heart disease dataset and the heart failure dataset collected from the Faisalabad Institute of Cardiology published at UCI. CS, FPA, WOA, and HHO algorithms for feature selection are applied for different population sizes and are realized based on the best fitness values. For the original dataset of heart disease, the maximum prediction F-score of 88% is obtained using K-nearest neighbour (KNN) when compared to logistic regression (LR), support vector machine (SVM), Gaussian Naive Bayes (GNB), and random forest (RF). With the proposed approach, the heart disease prediction F-score of 99.72% is obtained using KNN for population sizes 60 with FPA by selecting eight features. For the original dataset of heart failure, the maximum prediction F-score of 70% is obtained using LR and RF compared to SVM, GNB, and KNN. With the proposed approach, the heart failure prediction F-score of 97.45% is obtained using KNN for population sizes 10 with HHO by selecting five features. Experimental findings show that the applied meta-heuristic algorithms with ML algorithms significantly improve prediction performances compared to performances obtained from the original datasets. The motivation of this paper is to select the most critical and informative feature subset through meta-heuristic algorithms to improve classification accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...