Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 346: 122629, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38631667

ABSTRACT

Ferroptosis is a novel type of controlled cell death resulting from an imbalance between oxidative harm and protective mechanisms, demonstrating significant potential in combating cancer. It differs from other forms of cell death, such as apoptosis and necrosis. Molecular therapeutics have hard time playing the long-acting role of ferroptosis induction due to their limited water solubility, low cell targeting capacity, and quick metabolism in vivo. To this end, small molecule inducers based on biological factors have long been used as strategy to induce cell death. Research into ferroptosis and advancements in nanotechnology have led to the discovery that nanomaterials are superior to biological medications in triggering ferroptosis. Nanomaterials derived from iron can enhance ferroptosis induction by directly releasing large quantities of iron and increasing cell ROS levels. Moreover, utilizing nanomaterials to promote programmed cell death minimizes the probability of unfavorable effects induced by mutations in cancer-associated genes such as RAS and TP53. Taken together, this review summarizes the molecular mechanisms involved in ferroptosis along with the classification of ferroptosis induction. It also emphasized the importance of cell organelles in the control of ferroptosis in cancer therapy. The nanomaterials that trigger ferroptosis are categorized and explained. Iron-based and noniron-based nanomaterials with their characterization at the molecular and cellular levels have been explored, which will be useful for inducing ferroptosis that leads to reduced tumor growth. Within this framework, we offer a synopsis, which traverses the well-established mechanism of ferroptosis and offers practical suggestions for the design and therapeutic use of nanomaterials.


Subject(s)
Ferroptosis , Nanostructures , Neoplasms , Ferroptosis/drug effects , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Animals , Molecular Dynamics Simulation , Iron/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Reactive Oxygen Species/metabolism
2.
Int J Biol Macromol ; 267(Pt 2): 131139, 2024 May.
Article in English | MEDLINE | ID: mdl-38615863

ABSTRACT

Messenger RNA (mRNA) has gained marvelous attention for managing and preventing various conditions like cancer, Alzheimer's, infectious diseases, etc. Due to the quick development and success of the COVID-19 mRNA-based vaccines, mRNA has recently grown in prominence. A lot of products are in clinical trials and some are already FDA-approved. However, still improvements in line of optimizing stability and delivery, reducing immunogenicity, increasing efficiency, expanding therapeutic applications, scalability and manufacturing, and long-term safety monitoring are needed. The delivery of mRNA via a nanocarrier system gives a synergistic outcome for managing chronic and complicated conditions. The modified nanocarrier-loaded mRNA has excellent potential as a therapeutic strategy. This emerging platform covers a wide range of diseases, recently, several clinical studies are ongoing and numerous publications are coming out every year. Still, many unexplained physical, biological, and technical problems of mRNA for safer human consumption. These complications were addressed with various nanocarrier formulations. This review systematically summarizes the solved problems and applications of nanocarrier-based mRNA delivery. The modified nanocarrier mRNA meaningfully improved mRNA stability and abridged its immunogenicity issues. Furthermore, several strategies were discussed that can be an effective solution in the future for managing complicated diseases.


Subject(s)
COVID-19 , Drug Carriers , Nanoparticles , RNA, Messenger , SARS-CoV-2 , Humans , RNA, Messenger/genetics , Drug Carriers/chemistry , COVID-19/prevention & control , Nanoparticles/chemistry , COVID-19 Vaccines/immunology , Animals , RNA Stability
3.
Int J Biol Macromol ; 260(Pt 2): 129581, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266848

ABSTRACT

One of the critical steps in gene therapy is the successful delivery of the genes. Immunogenicity and toxicity are major issues for viral gene delivery systems. Thus, non-viral vectors are explored. A cationic polysaccharide like chitosan could be used as a nonviral gene delivery vector owing to its significant interaction with negatively charged nucleic acid and biomembrane, providing effective cellular uptake. However, the native chitosan has issues of targetability, unpacking ability, and solubility along with poor buffer capability, hence requiring modifications for effective use in gene delivery. Modified chitosan has shown that the "proton sponge effect" involved in buffering the endosomal pH results in osmotic swelling owing to the accumulation of a greater amount of proton and chloride along with water. The major challenges include limited exploration of chitosan as a gene carrier, the availability of high-purity chitosan for toxicity reduction, and its immunogenicity. The genetic drugs are in their infancy phase and require further exploration for effective delivery of nucleic acid molecules as FDA-approved marketed formulations soon.


Subject(s)
Chitosan , Nucleic Acids , Chitosan/chemistry , Protons , Gene Transfer Techniques , Genetic Therapy/methods
4.
J Control Release ; 350: 538-568, 2022 10.
Article in English | MEDLINE | ID: mdl-36030993

ABSTRACT

The invigoration of protein and peptides in serious eye disease includes age-related macular degeneration, choroidal neovascularization, retinal neovascularization, and diabetic retinopathy. The transportation of macromolecules like aptamers, recombinant proteins, and monoclonal antibodies to the posterior segment of the eye is challenging due to their high molecular weight, rapid degradation, and low solubility. Moreover, it requires frequent administration for prolonged therapy. The long-acting novel formulation strategies are helpful to overcome these issues and provide superior therapy. It avoids frequent administration, improves stability, high retention time, and avoids burst release. This review briefly enlightens posterior segments of eye diseases with their diagnosis techniques and treatments. This article mainly focuses on recent advanced approaches like intravitreal implants and injectables, electrospun injectables, 3D printed drug-loaded implants, nanostructure thin-film polymer devices encapsulated cell technology-based intravitreal implants, injectable and depots, microneedles, PDS with ranibizumab, polymer nanoparticles, inorganic nanoparticles, hydrogels and microparticles for delivering macromolecules in the eye for intended therapy. Furthermore, novel techniques like aptamer, small Interference RNA, and stem cell therapy were also discussed. It is predicted that these systems will make revolutionary changes in treating posterior segment eye diseases in future.


Subject(s)
Eye Diseases , Ranibizumab , Drug Delivery Systems/methods , Eye Diseases/drug therapy , Humans , Hydrogels/therapeutic use , Intravitreal Injections , Peptides/therapeutic use , Polymers/therapeutic use , RNA , Ranibizumab/therapeutic use , Recombinant Proteins/therapeutic use
5.
J Control Release ; 333: 188-245, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33766690

ABSTRACT

Cancer being one of the most precarious and second most fatal diseases evokes opportunities for multimodal delivery platforms which will act synergistically for efficient cancer treatment. Multifunctional iron oxide magnetic nanoparticles (IONPs) are being studied for few decades and still attracting increasing attention for several biomedical applications owing to their multifunctional design and intrinsic magnetic properties that provide a multimodal theranostic platform for cancer therapy, monitoring and diagnosis. The review article aims to provide brief information on various surface chemistries involved in modulating IONPs properties to exhibit potential therapy in cancer treatment. The review addresses structural, magnetic, thermal and optical properties of IONPs which aids in the fabrication of efficient multimodal nanoplatform in cancer therapy. The review discussed the pharmacokinetics of IONPs and attributes influencing them. This review inculcates recent advancements in therapies, focused on tumor-microenvironment-responsive and targeted therapy along with their eminent role in cancer diagnosis. The concept of stimuli-responsive including endogenous, exogenous and dual/multi stimuli-based delivery platform demonstrated significantly enhanced anticancer therapy. Several therapeutic approaches viz. chemotherapy, radiotherapy, immunotherapy, hyperthermia, gene therapy, sonodynamic therapy, photothermal, photodynamic-based therapy along with biosensing and several toxicity aspects of IONPs have been addressed in this review for effective cancer treatment.


Subject(s)
Hyperthermia, Induced , Neoplasms , Combined Modality Therapy , Ferric Compounds , Humans , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Phototherapy , Theranostic Nanomedicine , Tumor Microenvironment
6.
PDA J Pharm Sci Technol ; 75(4): 357-373, 2021.
Article in English | MEDLINE | ID: mdl-33608469

ABSTRACT

The solubility of the drug is a significant aspect to be considered during manufacturing of pharmaceutical products. Poor aqueous solubility of drugs imparts depleted bioavailability. In this regard, several techniques are available for enhancing drug solubility or dissolution. However, only few of them are scalable and industrially applicable. Hot-melt extrusion (HME) is one such technique that has been widely used in the industry. It is a single-step, continuous manufacturing, and scalable method that has proved successful in improving the solubility of poorly soluble drugs. This review highlights the numerous pharmaceutical applications of HME, such as formulations of sterile implants, taste masking of unpleasant drugs, cocrystallization, salt formation, sustained and controlled release formulations, etc. It also describes various hydrophilic and hydrophobic carriers utilized in HME. This review also briefly discusses the recent advances in HME and gives an update on the currently available marketed products. The opportunities and challenges in future development of pharmaceutical products by HME technique are also discussed.


Subject(s)
Chemistry, Pharmaceutical , Technology, Pharmaceutical , Delayed-Action Preparations , Drug Carriers , Drug Compounding , Hot Temperature , Solubility , Water
7.
J Control Release ; 330: 257-283, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33345832

ABSTRACT

In recent years, there have been significant advancements in the nanotechnology for cancer therapy. Even though molybdenum disulphide (MoS2)-based nanocomposites demonstrated extensive applications in biosensing, bioimaging, phototherapy, the review article focusing on MoS2 nanocomposite platform has not been accounted for yet. The review summarizes recent strategies on design and fabrication of MoS2-based nanocomposites and their modulated properties in cancer treatment. The review also discussed several therapeutic strategies (photothermal, photodynamic, immunotherapy, gene therapy and chemotherapy) and their combinations for efficient cancer therapy along with certain case studies. The review also inculcates various diagnostic techniques viz. magnetic resonance imaging, computed tomography, photoacoustic imaging and fluorescence imaging for diagnosis of cancer.


Subject(s)
Nanocomposites , Neoplasms , Disulfides , Humans , Immunotherapy , Molybdenum , Neoplasms/diagnostic imaging , Neoplasms/therapy , Phototherapy
8.
Drug Dev Ind Pharm ; 47(11): 1713-1732, 2021 Nov.
Article in English | MEDLINE | ID: mdl-35332822

ABSTRACT

The skin serves as the major organ in the targeted transdermal drug delivery system for many compounds. The microneedle acts as a novel technique to deliver drugs across the different layers of the skin, including the major barrier stratum corneum, in an effective manner. A microneedle array patch comprises dozens to hundreds of micron-sized needles with numerous structures and advantages resulting from their special and smart designs. The microneedle approach is much more advanced than conventional transdermal delivery pathways due to several benefits like minimally invasive, painless, self-administrable, and enhanced patient compliance. The microneedles are classified into hollow, solid, coated, dissolving, and hydrogel. Several polymers are used to fabricate microneedle, such as natural, semi-synthetic, synthetic, biodegradable, and swellable polymers. Researchers in the preparation of microneedles also explored the combinations of polymers. The safety of the polymer used in microneedle is a crucial aspect to prevent toxicity in vivo. Thus, this review aims to provide a detailed review of microneedles and mainly focus on the various polymers used in the fabrication of microneedles.


Subject(s)
Needles , Polymers , Administration, Cutaneous , Drug Delivery Systems/methods , Humans , Microinjections/methods , Polymers/chemistry , Skin/metabolism , Skin Absorption
SELECTION OF CITATIONS
SEARCH DETAIL
...