Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heredity (Edinb) ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834867

ABSTRACT

Good understanding of the genomic regions underlying adaptation of apple to boreal climates is needed to facilitate efficient breeding of locally adapted apple cultivars. Proper infrastructure for phenotyping and evaluation is essential for identification of traits responsible for adaptation, and dissection of their genetic composition. However, such infrastructure is costly and currently not available for the boreal zone of northern Sweden. Therefore, we used historical pomological data on climate adaptation of 59 apple cultivars and whole genome sequencing to identify genomic regions that have undergone historical selection among apple cultivars recommended for cultivation in northern Sweden. We found the apple collection to be composed of two ancestral groups that are largely concordant with the grouping into 'hardy' and 'not hardy' cultivars based on the pomological literature. Using a number of genome-wide scans for signals of selection, we obtained strong evidence of positive selection at a genomic region around 29 MbHFTH1 of chromosome 1 among apple cultivars in the 'hardy' group. Using phased genotypic data from the 20 K apple Infinium® SNP array, we identified haplotypes associated with the two cultivar groups and traced transmission of these haplotypes through the pedigrees of some apple cultivars. This demonstrates that historical data from pomological literature can be analyzed by population genomic approaches as a step towards revealing the genomic control of a key property for a horticultural niche market. Such knowledge is needed to facilitate efficient breeding strategies for development of locally adapted apple cultivars in the future. The current study illustrates the response to a very strong selective pressure imposed on tree crops by climatic factors, and the importance of genetic research on this topic and feasibility of breeding efforts in the light of the ongoing climate change.

2.
Theor Appl Genet ; 127(9): 1963-73, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25112202

ABSTRACT

KEY MESSAGE: Identification of novel resistance QTL against wheat aphids. First QTL-resistance report for R. padi in wheat and chromosome 2DL for S. graminum . These sources have potential use in wheat breeding. The aphids Rhopalosiphum padi and Schizaphis graminum are important pests of common wheat (Triticum aestivum L.). Characterization of the genetic bases of resistance sources is crucial to facilitate the development of resistant wheat cultivars to these insects. We examined 140 recombinant inbred lines (RILs) from the cross of Seri M82 wheat (susceptible) with the synthetic hexaploid wheat CWI76364 (resistant). RILs were phenotyped for R. padi antibiosis and tolerance traits. Phenotyping of S. graminum resistance was based on leaf chlorosis in a greenhouse screening and the number of S. graminum/tiller in the field. RILs were also scored for pubescence. Using a sequence-based genotyping method, we located genomic regions associated with these resistance traits. A quantitative trait locus (QTL) for R. padi antibiosis (QRp.slu.4BL) that explained 10.2 % of phenotypic variation was found in chromosome 4BL and located 14.6 cM apart from the pubescence locus. We found no association between plant pubescence and the resistance traits. We found two QTLs for R. padi tolerance (QRp.slu.5AL and QRp.slu.5BL) in chromosomes 5AL and 5BL, with an epistatic interaction between a locus in chromosome 3AL (EnQRp.slu.5AL) and QRp.slu.5AL. These genomic regions explained about 35 % of the phenotypic variation. We re-mapped a previously reported gene for S. graminum resistance (putatively Gba) in 7DL and found a novel QTL associated with the number of aphids/tiller (QGb.slu-2DL) in chromosome 2DL. This is the first report on the genetic mapping of R. padi resistance in wheat and the first report where chromosome 2DL is shown to be associated with S. graminum resistance.


Subject(s)
Aphids , Breeding , Quantitative Trait Loci , Triticum/genetics , Animals , Antibiosis/genetics , Chromosome Mapping , Chromosomes, Plant , Epistasis, Genetic , Genotype , Genotyping Techniques , Phenotype , Polymorphism, Single Nucleotide
3.
Hereditas ; 147(4): 142-53, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20887600

ABSTRACT

Low polymorphism in cultivated watermelon has been reported in previous studies, based mainly on US Plant Introductions and watermelon cultivars, most of which were linked to breeding programmes associated with disease resistance. Since germplasm sampled in a putative centre of origin in southern Africa may harbour considerably higher variability, DNA marker-based diversity was estimated among 81 seedlings from eight accessions of watermelon collected in Zimbabwe; five accessions of cow-melons (Citrullus lanatus var. citroides) and three of sweet watermelons (C. lanatus var. lanatus). Two molecular marker methods were used, random amplified polymorphic DNA (RAPD) and simple sequence repeats (SSR) also known as microsatellite DNA. Ten RAPD primers produced 138 markers of which 122 were polymorphic. Nine SSR primer pairs detected a total of 43 alleles with an average of 4.8 alleles per locus. The polymorphic information content (PIC) ranged from 0.47 to 0.77 for the RAPD primers and from 0.39 to 0.97 for the SSR loci. Similarity matrices obtained with SSR and RAPD, respectively, were highly correlated but only RAPD was able to provide each sample with an individual-specific DNA profile. Dendrograms and multidimensional scaling (MDS) produced two major clusters; one with the five cow-melon accessions and the other with the three sweet watermelon accessions. One of the most variable cow-melon accessions took an intermediate position in the MDS analysis, indicating the occurrence of gene flow between the two subspecies. Analysis of molecular variation (AMOVA) attributed most of the variability to within-accessions, and contrary to previous reports, sweet watermelon accessions apparently contain diversity of the same magnitude as the cow-melons.


Subject(s)
Citrullus/genetics , Genetic Variation , Polymorphism, Genetic , Random Amplified Polymorphic DNA Technique , Africa, Southern , Alleles , Breeding , DNA Primers/genetics , DNA, Plant/genetics , Genetic Markers , Microsatellite Repeats , Zimbabwe
4.
Hereditas ; 145(3): 99-112, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18667000

ABSTRACT

Trees of 68 apple cultivars, aimed for preservation by the 'National Program for diversity of cultivated plants' as mandate cultivars, were analysed using a set of 10 SSR (simple sequence repeat) primer pairs and the self-incompatibility (S-)locus to evaluate genetic diversity and reveal inter-cultivar relationships. The 12 polymorphic SSR loci exhibited 2 to 15 alleles, with expected heterozygozity (H(e)) ranging from 0.36 to 0.88 and a mean of 0.74. Numerous alleles were classified as rare or unique (35% and 18% respectively). For the S-locus, a total of 14 alleles were identified in this study. Five alleles, S1-S3, S5 and S7 had frequencies ranging from 11 to 18%, whereas the remaining 9 alleles were below 6%. All sexually obtained cultivars could be distinguished with the set of SSR loci. Sports were identical with their progenitors in two cases, but differed in one SSR allele in a third case. An SSR-based dendrogram, based on Roger's genetic distances, did not reveal any clear pattern of clustering. The genetic distances were, however, correlated with a corresponding matrix obtained in a previously conducted RAPD-based study of the same cultivars. Non-mandate parents of Swedish mandate cultivars together with some other reference cultivars were included in this study to check the accuracy of allele scoring, verify parentage and compare the results of this study with those presented in previously published studies. Some discrepancies in allele sizing were revealed and the possibilities of avoiding this problem are discussed.


Subject(s)
Alleles , Genes, Plant , Malus/genetics , Repetitive Sequences, Nucleic Acid , Flow Cytometry , Gene Frequency , Polymorphism, Genetic , Species Specificity , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL
...