Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 195: 256-265, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36652847

ABSTRACT

In the present study, the impact of four metal/metal oxide nanoparticles (NPs) viz.Ag, ZnO),ZVI and TiO2 on physiological seed quality attributes of green gram (Vigna radiata) were evaluated. The synthesized NPs characterized and evaluated the germination percentage, vigour indices and physiological responses like catalase and peroxidase activities (seed quality parameters) of fresh, naturally aged and fresh accelerated aged seed lots of green gram. In naturally aged seeds, zinc oxide-NPs (1000 mg kg-1) treated seeds showed 14.96% higher germination percentage, 24.81% higher vigour index I and (3696) and 33.33% higher vigour index II than the controls. The treated seeds with ZnO-NPs (1000 mg kg-1) under fresh accelerated aged conditions resulted in higher than 15.15% of germination percentage, 23.61% of vigour index I and 24.11% of vigour index II over controls. Moreover, ZnO-NPs treated naturally aged seeds showed lower electrical conductivity (EC) of 20.10 µ S cm-1g-1 than the control (26.60 µ S cm-1 g-1). Pertinent to catalase enzyme activity, ZnO-NPs (1000 mg kg-1) treated naturally aged seed lots resulted in 356.89 µmol H2O2 mg-1 min-1 activity, 216.05 µmol H2O2 mg-1 min-1 activity in fresh accelerated aged seed lots.. Similarly, ZnO-NPs (1000 mg kg-1) enhanced peroxidase enzyme activity in naturally aged seed lots (3.21 µg/FW/10 min) than control (0.72 µg/FW/10 min) that depicts 63.35% of increased enzyme activity. The present results showcases the ZnO-NPs as potent nano-priming agents in maintaining the seed quality parameters that ultimately establish better crop stand and field performance.


Subject(s)
Metal Nanoparticles , Vigna , Zinc Oxide , Catalase , Germination , Hydrogen Peroxide , Seeds/physiology , Zinc Oxide/pharmacology
2.
Environ Res ; 227: 115320, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36706904

ABSTRACT

The present study develops a novel concept of using waste media as an algal nutrient resource compared to the usual growth media with the aid of growth kinetics study and metabolite production abilities. Food- and agri-compost wastes are compact structures with elemental compounds for microbial media. As a part of the study, environ-burden wastes (3:1) as a food source for photosynthetic algae as a substitute for the costly nutrient media were proposed. The environment-burden waste was also envisaged for macromolecule production, i.e., 99200 µg/ml lipid, 112.5 µg/ml protein, and 8.75 µg/ml carbohydrate with different dilutions of agri-waste, bold basal media (BBM), and Food waste, respectively. The fabricated growth kinetics and dynamics showcased the unstructured models of different photosynthetic algal growth phases and the depiction of productivity and kinetic parameters. The theoretical maximum biomass concentration (Xp) was found to be more (0.871) with diluted agricompost media than the usual BBM (0.697). The XLim values were found to be 0.362, 0.323 and 0.209 for BBM, diluted agri-compost media and diluted food waste media, respectively. Overall, the study proposes a cleaner approach of utilizing the wastes as growth media through a circular economy approach which eventually reduces the growth media cost with integrated macromolecule production capabilities.


Subject(s)
Composting , Microalgae , Refuse Disposal , Food , Biofuels , Biomass
3.
Article in English | MEDLINE | ID: mdl-36695048

ABSTRACT

In the present study, the effects of electrode surface area, proton exchange membrane area, and volume of the anodic chamber were investigated on the performance of five different dual chamber microbial fuel cells (MFC) using synthetic wastewater toward wastewater treatment coupled electricity generation. In the batch mode, the five different MFC's were operated with the anodic chamber volumes of 93-890 mL, 17.33-56.77 cm2 electrode surface area, obtained volumetric power densities of 137.72-58.13 mW/m3, and unit area power densities ranging from 27.04 to 11.94 mW/m2. Fed-batch studies were done with the MFC having 740 mL anodic chamber volume at different wastewater COD concentrations. The power density per unit area increased from 22.93 mW/m2 to 36.25 cm2 when the distance between electrodes was reduced from 10 to 6 cm. A maximum volumetric power density of 135.21 mW/m3 has been attained with a 6 cm electrode distance with the accomplished COD reduction of 93.21%. The presence of biofilm on the anode has been visualized through the SEM images. The higher COD concentration of wastewater and the fed-batch operation resulted in increased power output and wastewater treatment efficiency.


Subject(s)
Bioelectric Energy Sources , Water Purification , Wastewater , Protons , Electricity , Electrodes , Water Purification/methods
4.
Environ Pollut ; 316(Pt 1): 120530, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36341826

ABSTRACT

A waste-based circular economy approach is proposed for the phycoremediation of an X-ray developer (XD) solution. The present study emphasizes the utilization of food waste (FW) and agri-compost media (ACM) as growth media for D. armatus for the subsequent bioremediation potential of XD solution-coupled lipid production. A 3:1 dilution (FW/ACM: XD.) was found to be suitable for the phycoremediation study of XD solution towards the % removal of biological oxygen demand (BOD), chemical oxygen demand (COD) and silver. The phycoremediation studies of diluted XD solution in FW demonstrated a 74.50% BOD removal, 81.69% COD removal, and 54.70% removal of silver. The growth of D. armatus in diluted XD solution in food waste was 1.37% lipid content. The phycoremediation of diluted XD solution with ACM resulted in 83.05% BOD removal, 88.88% COD removal and 56.30% silver removal with the concomitant lipid production of 1.42%. The optimal bioremediation coupled lipid production of D. armatus was observed on the 19th day of D. armatus cultivation in the developer effluent, along with food waste and agri-compost media, for 31 days. The study suggests a sustainable utilization of waste (FW and ACM) as a nutritive medium to scrutinize the phycoremediation of XD solution with a concomitant lipid production that can open up new avenues in phycoremediation coupled energy commodities production.


Subject(s)
Microalgae , Refuse Disposal , Wastewater/chemistry , X-Rays , Silver , Food , Lipids , Biomass
5.
Food Chem ; 390: 133173, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35594772

ABSTRACT

Analytical sciences have witnessed emergent techniques for efficient clinical and industrial food adulterants detection. In this review, the contributions made by the paper-based devices are highlighted for efficient and rapid detection of food adulterants and additives, which is the need of the hour and how different categories of techniques have been developed in the past decade for upgrading the performance for point-of-care testing. A simple strategy with an arrangement for detecting specific adulterants followed by the addition of samples to obtain well-defined qualitative or quantitative signals for confirming the presence of target species. The paper-based microfluidics-based technology advances and prospects for food adulterant detection are discussed given the high-demand from the food sectors and serve as a valued technology for food researchers working in interdisciplinary technological frontiers.


Subject(s)
Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Cost-Benefit Analysis , Microfluidics , Paper
6.
Appl Biochem Biotechnol ; 194(9): 4066-4080, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35593952

ABSTRACT

The present study explores the potential of Brassica juncea as a low-cost substrate for biodiesel production through the growth of oleaginous yeast. Firstly, the selected lignocellulosic biomass, i.e., Brassica juncea, was thermochemically pretreated using dilute sodium hydroxide. Optimization of thermochemical pretreatment resulted in significant removal of lignin and hemicellulose with 8.4% increase in cellulose content. Further, the sugar hydrolysate of pretreated biomass was used as a substrate for the growth of selected oleaginous yeast (Cryptococcus sp. MTCC 5455). Lipid and biomass production was optimized using central composite design (CCD) based on response surface methodology (RSM). Maximum biomass and lipid content of 32.50 g/L and 11.05 g/L, respectively, was obtained at 30 °C temperature, pH 6.0, and after 5 days of incubation. The oleaginous yeast lipid was further transesterified using immobilized lipase. The highest fatty acid methyl ester 15% FAME yield was obtained after 10 h of enzymatic reaction. Next, the results of specific gravity, viscosity, flash points, and cloud point of obtained biodiesels were conformed to the ASTM D975 standard. Overall, the present study put forth the cost-effective approach for lignocellulosic biomass-based oleaginous lipid production toward the green synthesis of biodiesel.


Subject(s)
Biofuels , Mustard Plant , Biomass , Fatty Acids , Yeasts
7.
Bioengineered ; 13(4): 9645-9661, 2022 04.
Article in English | MEDLINE | ID: mdl-35436410

ABSTRACT

The growing, existing demand for low-cost and high-quality hyaluronic acid (HA) needs an outlook of different possible production strategies from renewable resources with the reduced possibility of cross-infections. Recently, the possibility of producing HA from harmless microorganisms appeared, which offers the opportunity to make HA more economical, without raw material limitations, and environmentally friendly. HA production is mainly reported with Lancefield Streptococci A and C, particularly from S. equi and S. zooepidemicus. Various modes of fermentation such as batch, repeated batch, fed-batch, and continuous culture have been investigated to optimize HA production, particularly from S. zooepidemicus, obtaining a HA yield of 2.5 g L-1 - 7.0 g L-1. Among the different utilized DSP approaches of HA production, recovery with cold ethanol (4°C) and cetylpyridinium chloride is the ideal strategy for lab-scale HA production. On the industrial scale, besides using isopropanol, filtration (0.22 um), ultrafiltration (100 kDa), and activated carbon absorption are employed to obtain HA of low molecular weight and additional ultrafiltration to purify HA of higher MW. Even though mature technologies have already been developed for the industrial production of HA, the projections of increased sales volume and the expansion of application possibilities require new processes to obtain HA with higher productivity, purity, and specific molecular weights. In this review, we have put forth the progress of HA technological research by discussing the microbial biosynthetic aspects, fermentation and downstream strategies, industrial-scale scenarios of HA, and the prospects of HA production to meet the current and ongoing market demands.


Subject(s)
Streptococcus equi , Biotechnology , Fermentation , Hyaluronic Acid , Molecular Weight
8.
Chemosphere ; 299: 134429, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35346739

ABSTRACT

Potato peel waste is one of the zero-value wastes with the potential of bioethanol production through the Waste to Energy (WtE) approach. The newly isolated, phenotypically characterized, and molecular identified high-altitude strain, B. amyloliquefaciens, shown promising starch hydrolysis (12.06 g/L reducing sugars) over acid hydrolysis and is capable of working at 30-50 °C and pH 6.0-8.0. The ethanol production by Acinetobacter sp. (a newly isolated, phenotypically characterized, molecular identified) has been modelled and optimized through the central composite design of response surface methodology by taking the fermentation variables as input variables and ethanol yield as the output variable. The ethanol production by Acinetobacter sp. showcased a non-linear relationship of fermentation variables with the ethanol yield (5.83 g/L) with a 99.11% desirability function (R2) and 97.50 adj. R2 values. Optimal fermentation variables of 38.8% substrate concentration, 7% inoculum, pH 5.45 have been utilized for bioethanol production in 55.27 h at 27 °C. Overall, the present study evaluated the efficiency of newly isolated, indigenous extremophilic microbes of The Himalayan region in sustainable bioethanol production from zero-value waste "Potato peel waste" through the WtE approach. Moreover, the present study introduces the promising, unexplored extremophilic microbial strains with the starch-hydrolyzing and fermentation capabilities to bioethanol biorefinery.


Subject(s)
Acinetobacter , Biofuels , Fermentation , Solanum tuberosum , Acinetobacter/metabolism , Ethanol , Hydrolysis , Solanum tuberosum/chemistry , Starch/metabolism
9.
Environ Res ; 204(Pt D): 112346, 2022 03.
Article in English | MEDLINE | ID: mdl-34742708

ABSTRACT

Metals represent a large proportion of industrial effluents, which due to their high hazardous nature and toxicity are responsible to create environmental pollution that can pose significant threat to the global flora and fauna. Strict ecological rules compromise sustainable recovery of metals from industrial effluents by replacing unsustainable and energy-consuming physical and chemical techniques. Innovative technologies based on the bioelectrochemical systems (BES) are a rapidly developing research field with proven encouraging outcomes for many industrial commodities, considering the worthy options for recovering metals from industrial effluents. BES technology platform has redox capabilities with small energy-intensive processes. The positive stigma of BES in metals recovery is addressed in this review by demonstrating the significance of BES over the current physical and chemical techniques. The mechanisms of action of BES towards metal recovery have been postulated with the schematic representation. Operational limitations in BES-based metal recovery such as biocathode and metal toxicity are deeply discussed based on the available literature results. Eventually, a progressive inspection towards a BES-based metal recovery platform with possibilities of integration with other modern technologies is foreseen to meet the real-time challenges of viable industrial commercialization.


Subject(s)
Bioelectric Energy Sources , Metals , Recycling
10.
Bioresour Technol ; 344(Pt B): 126254, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34757227

ABSTRACT

Waste to the product approach was proposed for tuning environ-threat soybean husk towards lipolytic enzyme by integrating the invasive weed optimization with biomass and product dynamics study. The invasive weed optimization constitutes based on the non-linear regression model results in a 47 % enhancement in lipolytic enzyme using the optimization parameters of 7% Sigma Final, 9% exponent; Smax of 5 with a population size of 35 and Max. generations of 99. The biomass dynamic study showcases the dynamic parameters of 0.0239 µmax, 8.17 XLimst and 0.852 RFin values. The product dynamic studies reveal the kinetic parameters of kst, kdiv, PFin, which seem to be equal to -0.0338, 0.0896 and 68.1, respectively. Overall, the present study put forth the zero-waste (soybean husk) to the product (lipolytic enzyme) approach by introducing the novel "Invasive Weed Optimization" coupled with "Biomass and product dynamics" to the bioprocessing field.


Subject(s)
Glycine max , Plant Weeds , Biomass , Kinetics
11.
Bioengineered ; 12(2): 11055-11075, 2021 12.
Article in English | MEDLINE | ID: mdl-34783642

ABSTRACT

As a consequence of expanded science and technical research, the market perception of consumers has shifted from standard traditional to valuable foods, which are furthermore nutritional as well as healthier in today's world. This food concept, precisely referred to as functional, focuses on including probiotics, which enhance immune system activity, cognitive response, and overall health. This review primarily focuses on functional foods as functional additives in beverages and other food items that can regulate the human immune system and avert any possibility of contracting the infection. Many safety concerns must be resolved during their administration. Functional foods must have an adequate amount of specific probiotic strain(s) during their use and storage, as good viability is needed for optimum functionality of the probiotic. Thus, when developing novel functional food-based formulations, choosing a strain with strong technological properties is crucial. The present review focused on probiotics as an active ingredient in different beverage formulations and the exerting mechanism of action and fate of probiotics in the human body. Moreover, a comprehensive overview of the regulative and safety issues of probiotics-based foods and beverages formulations.


Subject(s)
Beverages , Functional Food , Technology , Animals , Fermented Foods , Health , Humans , Probiotics
12.
Front Microbiol ; 12: 658284, 2021.
Article in English | MEDLINE | ID: mdl-34475852

ABSTRACT

Biodiesel is an eco-friendly, renewable, and potential liquid biofuel mitigating greenhouse gas emissions. Biodiesel has been produced initially from vegetable oils, non-edible oils, and waste oils. However, these feedstocks have several disadvantages such as requirement of land and labor and remain expensive. Similarly, in reference to waste oils, the feedstock content is succinct in supply and unable to meet the demand. Recent studies demonstrated utilization of lignocellulosic substrates for biodiesel production using oleaginous microorganisms. These microbes accumulate higher lipid content under stress conditions, whose lipid composition is similar to vegetable oils. In this paper, feedstocks used for biodiesel production such as vegetable oils, non-edible oils, oleaginous microalgae, fungi, yeast, and bacteria have been illustrated. Thereafter, steps enumerated in biodiesel production from lignocellulosic substrates through pretreatment, saccharification and oleaginous microbe-mediated fermentation, lipid extraction, transesterification, and purification of biodiesel are discussed. Besides, the importance of metabolic engineering in ensuring biofuels and biorefinery and a brief note on integration of liquid biofuels have been included that have significant importance in terms of circular economy aspects.

13.
Environ Pollut ; 268(Pt A): 115837, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33120334

ABSTRACT

The present research is mainly focusing on the characterization of X-ray developer solution and its toxic tolerance studies with Desmodesmus armatus towards the phycoremediation studies for removal of pollutants, silver, and concomitant lipid production. The characterization results suggested the presence of 1.229 ± 0.004 g/l BOD, 27.29 ± 0.230 g/l COD with a silver content of 0.01791 ± 0.000 g/l. The tolerance and toxicity limits of with X-ray developer solution reveals the remarkable growth of microalgae in 3:1.dilution ratio of BBM in the X-ray developer solutions. The phycoremediation with 19 days period shown the noticeable results with a relative BOD (20.86%), COD (13.88%), with 57.10% corresponding total phosphorous removal. The phycoremediation also has proven better relative silver removal potential of 44.06% on the 19th day with concomitant 1.392% lipid production. Overall, the present study shows the potential phycoremediation strategy of hazardous X-ray developer solutions with possible concurrent lipid production through a sustainable approach.


Subject(s)
Microalgae , Silver , Biodegradation, Environmental , Biomass , Lipids , Wastewater , X-Rays
14.
J Biosci Bioeng ; 129(6): 647-656, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32044271

ABSTRACT

Bioelectrochemical systems (BESs) have been intensively investigated over the last decade owing to its wide-scale environmentally friendly applications, among which wastewater treatment, power generation and environmental monitoring for pollutants are prominent. Different variants of BES such as microbial fuel cell, microbial electrolysis cell, microbial desalination cell, enzymatic fuel cell, microbial solar cell, have been studied. These microbial bioelectrocatalytic systems have clear advantages over the existing analytical techniques for sustainable on-site application in wide environmental conditions with minimum human intervention, making the technology irrevocable and economically feasible. The key challenges to establish this technology are to achieve stable and efficient interaction between the electrode surface and microorganisms, reduction of time for start-up and toxic-shock recovery, sensitivity improvement in real-time conditions, device miniaturization and its long-term economically feasible commercial application. This review article summarizes the recent technical progress regarding bio-electrocatalytic processes and the implementation of BESs as a biosensor for determining various compositional characteristics of water and wastewater.


Subject(s)
Biosensing Techniques , Water/metabolism , Animals , Biochemical Phenomena , Bioelectric Energy Sources , Electrodes , Electrolysis , Humans , Water Purification
15.
Curr Microbiol ; 77(5): 779-785, 2020 May.
Article in English | MEDLINE | ID: mdl-31925512

ABSTRACT

The enhanced lipid accumulation in microalgae is envisioned under special stress conditions with the cost of algal growth, which in turn affects the overall lipid productivity. The selection of suitable stress conditions facilitates better lipid productivity without any harmful effect on microalgae growth and algal biomass production. In the present study, we have attempted to select the best salinity conditions towards better growth, biomass accumulation, and lipid productivity of microalgae. The study also envisaged testing the feasibility of the stepwise salinity stress-induced cultivation approach to minimize the growth penalty effect of microalgae. The highest specific growth rate (0.129, 0.133, 0.113 µday-1) and doubling per day (0.185, 0.193, 0.163 per day) were obtained at salinity concentration of 40 mM NaCl in BG-11 medium for Scenedesmus quadricauda (Sq19), Scenedesmus dimorphus (Sd12), and Chlorella sp. (Chl16), respectively. Maximal lipid content of 18.28, 30.70, and 32.19%, and lipid productivity of 8.59, 13.81, and 10.27 mg l-1 day-1 were achieved at 160 mM of NaCl in BG-11 media with the Sq19, Sd12, and Chl16 algal isolates, respectively. The utilization of stepwise salinity stress (160 mM) induced cultivation of Sd12 algal isolate results in higher lipid content (39.42%) and slightly improved lipid productivity than the control (without any stress, 20.4% lipid content). The results indicate the feasibility of enhancing the lipid content and productivity through the salinity-induced stepwise cultivation strategy.


Subject(s)
Chlorella/growth & development , Chlorella/metabolism , Lipids/biosynthesis , Salt Stress , Scenedesmus/growth & development , Scenedesmus/metabolism , Biomass , Feasibility Studies , Lipid Metabolism , Salinity
16.
Bioresour Technol ; 264: 370-381, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29960825

ABSTRACT

Lignocellulose biorefinery encompasses process engineering and biotechnology tools for the processing of lignocellulosic biomass for the manufacturing of bio-based products (such as biofuels, bio-chemicals, biomaterials). While, lignocellulose biorefinery offers clear value proposition, success at industrial level has not been vibrant for the commercial production of renewable chemicals and fuels. This is because of high capital and operating expenditures, irregularities in biomass supply chain, technical process immaturity, and scale up challenges. As a result, commercial production of biochemicals and biofuels with right economics is still lagging behind. To hit the market place, efforts are underway by bulk and specialty chemicals producing companies like DSM (Succinic acid, Cellulosic ethanol), Dow-DuPont (1,3-Propanediol, 1,4-Butanediol), Clariant-Global bioenergies-INEOS (bio-isobutene), Braskem (Ethylene, polypropylene), Raizen, Gran-bio and POET-DSM (Cellulosic ethanol), Amyris (Farnesene), and several other potential players. This paper entails the concept of lignocellulose biorefinery, technical challenges for industrialization of renewable fuels and bulk chemicals and future directions.


Subject(s)
Biofuels , Bioreactors , Lignin/metabolism , Biomass , Biotechnology
17.
Bioengineered ; 9(1): 98-107, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28471319

ABSTRACT

Algal biofuels are far from a commercial reality due to the technical challenges associated with their growth and lipid extraction procedures. In this study, we investigated the effect of 4 different media and 5 different nitrogen sources at 5 levels on the growth, biomass and lipid productivity of Scenedesmus sp and Chlorella sp The hypothesis was that a nitrogen source can be identified that provides enough stress to accumulate lipids without compromising significantly on biomass and lipid productivity. A maximum specific growth rate and doubling per day have been observed with algal species using modified BG-11 medium. Among the tested nitrogen sources, 2.5 mM potassium nitrate as a nitrogen constituent of modified BG-11 medium resulted in higher lipid content and productivity in the case of S. dimorphus (29.15%, 15.449 mg L-1day-1). Another noteworthy outcome of the present study lies in the usage of a smaller amount of the nitrogen source, i.e., 2.5 mM, which is found to be 7 times less than the standard BG11 media (17.60 mM sodium nitrate).


Subject(s)
Chlorella/drug effects , Lipids/agonists , Microalgae/drug effects , Nitrates/pharmacology , Potassium Compounds/pharmacology , Scenedesmus/drug effects , Biofuels , Biomass , Chlorella/growth & development , Chlorella/metabolism , Culture Media/chemistry , Culture Media/pharmacology , Dose-Response Relationship, Drug , Lipids/biosynthesis , Microalgae/growth & development , Microalgae/metabolism , Nitrates/metabolism , Nitrogen/metabolism , Nitrogen/pharmacology , Potassium Compounds/metabolism , Scenedesmus/growth & development , Scenedesmus/metabolism
18.
Eng Life Sci ; 18(5): 308-316, 2018 May.
Article in English | MEDLINE | ID: mdl-32624910

ABSTRACT

Cross-linked enzyme crystal (CLEC) and sol-gel entrapped pseudomonas sp. lipase were investigated for the esterification of lauric acid with ethanol by considering the effects of reaction conditions on reaction rate. The activation energy for the reaction was estimated to be 1097.58 J/mol and 181.75 J/mol for sol-gel and CLEC entrapped lipase respectively. CLEC lipase exhibited a marginal internal diffusion effect on reaction rate over sol-gel lipases and found to be interesting. The overall reaction mechanism was found to conform to the Ping Pong Bi Bi mechanism. The higher efficiency of sol-gel lipases over CLEC lipases in esterification reaction is mainly due to the combined effects of crowding, confinement and diffusional limitations.

19.
Biotechnol Rep (Amst) ; 9: 9-14, 2016 Mar.
Article in English | MEDLINE | ID: mdl-28352587

ABSTRACT

Crude glycerol that is produced as the by-product from biodiesel, has to be effectively utilized to contribute to the viability of biodiesel. Crude glycerol in large amounts can pose a threat to the environment. Therefore, there is a need to convert this crude glycerol into valued added products using biotechnological processes, which brings new revenue to biodiesel producers. Crude glycerol can serve as a feedstock for biopolymers, poly unsaturated fatty acids, ethanol, hydrogen and n-butanol production and as a raw material for different value added industrial products. Hence, in this review we have presented different bioconversion technologies of glycerol to value added industrial products.

20.
Biomed Res Int ; 2013: 374967, 2013.
Article in English | MEDLINE | ID: mdl-24106703

ABSTRACT

Lipases are the enzymes of choice for laundry detergent industries owing to their triglyceride removing ability from the soiled fabric which eventually reduces the usage of phosphate-based chemical cleansers in the detergent formulation. In the present study, a partially purified bacterial lipase from Staphylococcus arlettae JPBW-1 isolated from the rock salt mine has been assessed for its triglyceride removing ability by developing a presoak solution so as to use lipase as an additive in laundry detergent formulations. The effects of selected surfactants, commercial detergents, and oxidizing agents on lipase stability were studied in a preliminary evaluation for its further usage in the industrial environment. Partially purified lipase has shown good stability in presence of surfactants, commercial detergents, and oxidizing agents. Washing efficiency has been found to be enhanced while using lipase with 0.5% nonionic detergent than the anioinic detergent. The wash performance using 0.5% wheel with 40 U lipase at 40°C in 45 min results in maximum oil removal (62%) from the soiled cotton fabric. Hence, the present study opens the new era in enzyme-based detergent sector for formulation of chemical-free detergent using alkaline bacterial lipase.


Subject(s)
Detergents/chemistry , Lipase/chemistry , Staphylococcus/enzymology , Enzyme Stability , Lipase/genetics , Lipase/isolation & purification , Temperature , Textiles , Triglycerides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...