Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 77: 111-120, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28531985

ABSTRACT

Micro/nano electrodes employing nanotubes has attracted paramount attention in recent years due to their inherent superior mechanical and structural properties. Electrical interfaces with different geometries and sizes have been developed as electrodes for measuring action potentials and investigating neural information processing in neural networks. In this work, we investigated the possibility of using TiO2 nanotube arrays that were grown using electrochemical anodization technique, as a micro/nano electrode for neural interfacing. The morphology of fabricated nanotube arrays were found to be significantly affected by the applied voltage. Annealing and doping of TiO2 nanotube arrays has been performed to improve the structural and electrical properties of the nanotube arrays. It was found that the annealing and doping with nitrogen improve the electrical conductivity of the nanotube arrays. Moreover, the tube diameter and length can be controlled by changing the applied voltage and that can significantly affect the biocompatibility of the nanotube arrays. It was observed that nitrogen doped nanotubes with morphology consisting of 61nm diameter, 25nm wall thickness and tube length of 2.25µm could be good candidate to be used as electrodes for biological interfacing. This is due to the fact that the nitrogen doped nanotubes with aforementioned morphology possess great properties necessary for effective biological interfacing such as low impedance, high capacitance and good biocompatibility.


Subject(s)
Nanotubes , Electrochemical Techniques , Electrodes , Titanium
2.
Mater Sci Eng C Mater Biol Appl ; 59: 1125-1142, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26652471

ABSTRACT

Nanotube structures have attracted tremendous attention in recent years in many applications. Among such nanotube structures, titania nanotubes (TiO2) have received paramount attention in the medical domain due to their unique properties, represented by high corrosion resistance, good mechanical properties, high specific surface area, as well as great cell proliferation, adhesion and mineralization. Although lot of research has been reported in developing optimized titanium nanotube structures for different medical applications, however there is a lack of unified literature source that could provide information about the key parameters and experimental conditions required to develop such optimized structure. This paper addresses this gap, by focussing on the fabrication of TiO2 nanotubes through anodization process on both pure titanium and titanium alloys substrates to exploit the biocompatibility and electrical conductivity aspects, critical factors for many medical applications from implants to in-vivo and in-vitro living cell studies. It is shown that the morphology of TiO2 directly impacts the biocompatibility aspects of the titanium in terms of cell proliferation, adhesion and mineralization. Similarly, TiO2 nanotube wall thickness of 30-40nm has shown to exhibit improved electrical behaviour, a critical factor in brain mapping and behaviour investigations if such nanotubes are employed as micro-nano-electrodes.


Subject(s)
Biocompatible Materials , Nanotubes , Prostheses and Implants , Titanium , Bone and Bones/surgery , Electric Conductivity , Electrodes , Humans , Tooth/surgery
3.
J Chem Phys ; 140(7): 074905, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24559368

ABSTRACT

An approximate solution for n-point correlation functions is developed in this study. In the approximate solution, weight functions are used to connect subsets of (n-1)-point correlation functions to estimate the full set of n-point correlation functions. In previous related studies, simple weight functions were introduced for the approximation of three and four-point correlation functions. In this work, the general framework of the weight functions is extended and derived to achieve optimum accuracy for approximate n-point correlation functions. Such approximation can be utilized to construct global n-point correlation functions for a system when there exist limited information about these functions in a subset of space. To verify its accuracy, the new formulation is used to approximate numerically three-point correlation functions from the set of two-point functions directly evaluated from a virtually generated isotropic heterogeneous microstructure representing a particulate composite system. Similarly, three-point functions are approximated for an anisotropic glass fiber/epoxy composite system and compared to their corresponding reference values calculated from an experimental dataset acquired by computational tomography. Results from both virtual and experimental studies confirm the accuracy of the new approximation. The new formulation can be utilized to attain a more accurate approximation to global n-point correlation functions for heterogeneous material systems with a hierarchy of length scales.

4.
Nanotechnology ; 24(15): 155704, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23518871

ABSTRACT

Carbon nanotubes (CNTs) were grown on the surface of carbon fibers utilizing a relatively low temperature synthesis technique; graphitic structures by design (GSD). To probe the effects of the synthesis protocols on the mechanical properties, other samples with surface grown CNTs were prepared using catalytic chemical vapor deposition (CCVD). The woven graphite fabrics were thermally shielded with a thin film of SiO2 and CNTs were grown on top of this film. Raman spectroscopy and electron microscopy revealed the grown species to be multi-walled carbon nanotubes (MWCNTs). The damping performance of the hybrid CNT-carbon fiber-reinforced epoxy composite was examined using dynamic mechanical analysis (DMA). Mechanical testing confirmed that the degradations in the strength and stiffness as a result of the GSD process are far less than those encountered through using the CCVD technique and yet are negligible compared to the reference samples. The DMA results indicated that, despite the minimal degradation in the storage modulus, the loss tangent (damping) for the hybrid composites utilizing GSD-grown MWCNTs improved by 56% compared to the reference samples (based on raw carbon fibers with no surface treatment or surface grown carbon nanotubes) over the frequency range 1-60 Hz. These results indicated that the energy dissipation in the GSD-grown MWCNTs composite can be primarily attributed to the frictional sliding at the nanotube/epoxy interface and to a lesser extent to the stiff thermal shielding SiO2 film on the fiber/matrix interface.

SELECTION OF CITATIONS
SEARCH DETAIL
...