Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
RSC Med Chem ; 15(5): 1539-1546, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38784453

ABSTRACT

Dysregulation of the networking of RNA-binding proteins (RBPs) and RNAs drives many human diseases, including cancers, and the targeting of RNA-protein interactions (RPIs) has emerged as an exciting area of RNA-targeted drug discovery. Accordingly, methods that enable the discovery of cell-active small molecule modulators of RPIs are needed to propel this emerging field forward. Herein, we describe the application of live-cell assay technology, RNA interaction with protein-mediated complementation assay (RiPCA), for high-throughput screening to identify small molecule inhibitors of the pre-let-7d-Lin28A RPI. Utilizing a combination of RNA-biased small molecules and virtual screening hits, we discovered an RNA-binding small molecule that can disrupt the pre-let-7-Lin28 interaction demonstrating the potential of RiPCA for advancing RPI-targeted drug discovery.

2.
ACS Med Chem Lett ; 15(4): 424-431, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38628790

ABSTRACT

As we celebrate International Women's Day 2024 with the theme "Inspire Inclusion", the women of the ACS Medicinal Chemistry Division (MEDI) want to foster a sense of belonging, relevance, and empowerment by sharing uplifting stories of what inspired them to become medicinal chemists. In this editorial, we are featuring female medicinal chemistry scientists to provide role models, encouragement, and inspiration to others. We asked women medicinal chemists to contribute a brief paragraph about what inspired them to become medicinal chemists or what inspires them today as medicinal chemists. The responses and contributions highlight their passions and motivations, such as their love of the sciences and their drive to improve human health by contributing to basic research and creating lifesaving drugs.

3.
J Med Chem ; 67(6): 4251-4258, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38456628

ABSTRACT

As we celebrate International Women's Day 2024 with the theme "Inspire Inclusion", the women of the ACS Medicinal Chemistry Division (MEDI) want to foster a sense of belonging, relevance, and empowerment by sharing uplifting stories of what inspired them to become medicinal chemists. In this editorial, we are featuring female medicinal chemistry scientists to provide role models, encouragement, and inspiration to others. We asked women medicinal chemists to contribute a brief paragraph about what inspired them to become medicinal chemists or what inspires them today as medicinal chemists. The responses and contributions highlight their passions and motivations, such as their love of the sciences and their drive to improve human health by contributing to basic research and creating lifesaving drugs.


Subject(s)
Chemistry, Pharmaceutical , Power, Psychological , Humans , Female
4.
Biochemistry ; 62(23): 3323-3336, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37963240

ABSTRACT

RNA-binding proteins (RBPs) act as essential regulators of cell fate decisions, through their ability to bind and regulate the activity of cellular RNAs. For protein-coding mRNAs, RBPs control the localization, stability, degradation, and ultimately translation of mRNAs to impact gene expression. Disruption of the vast network of mRNA-protein interactions has been implicated in many human diseases, and accordingly, targeting these interactions has surfaced as a new frontier in RNA-targeted drug discovery. To catalyze this new field, methods are needed to enable the detection and subsequent screening of mRNA-RBP interactions, particularly in live cells. Using our laboratory's RNA-interaction with Protein-mediated Complementation Assay (RiPCA) technology, herein we describe its application to mRNA-protein interactions and present a guide for the development of future RiPCA assays for structurally diverse classes of mRNA-protein interactions.


Subject(s)
RNA-Binding Proteins , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
5.
J Med Chem ; 66(15): 10734-10745, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37471629

ABSTRACT

Eukaryotic translation initiation factor 4E (eIF4E) is an RNA-binding protein that binds to the m7GpppX-cap at the 5' terminus of coding mRNAs to initiate cap-dependent translation. While all cells require cap-dependent translation, cancer cells become addicted to enhanced translational capacity, driving the production of oncogenic proteins involved in proliferation, evasion of apoptosis, metastasis, and angiogenesis, among other cancerous phenotypes. eIF4E is the rate-limiting translation factor, and its activation has been shown to drive cancer initiation, progression, metastasis, and drug resistance. These findings have established eIF4E as a translational oncogene and promising, albeit challenging, anti-cancer therapeutic target. Although significant effort has been put forth toward inhibiting eIF4E, the design of cell-permeable, cap-competitive inhibitors remains a challenge. Herein, we describe our work toward solving this long-standing challenge. By employing an acyclic nucleoside phosphonate prodrug strategy, we report the synthesis of cell-permeable inhibitors of eIF4E binding to capped mRNA to inhibit cap-dependent translation.


Subject(s)
Eukaryotic Initiation Factor-4E , Neoplasms , Eukaryotic Initiation Factor-4E/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Carrier Proteins/metabolism , RNA-Binding Proteins/metabolism , Protein Binding , Protein Biosynthesis , Neoplasms/drug therapy
6.
J Nat Prod ; 86(7): 1801-1814, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37463274

ABSTRACT

Discovery and structure elucidation of natural products available in infinitesimally small quantities are recognized challenge. This challenge is epitomized by the diphenazine class of molecules that contain three bridged stereocenters, several conformations, ring fusions, and multiple spatially isolated phenols. Because empirical NMR and spatial analyses using ROESY/NOESY were unsuccessful in tackling these challenges, we developed a computational pipeline to determine the relative and absolute configurations and phenol positions of diphenazines as inhibitors of eukaryotic translation initiation factor 4E (eIF4E) protein-protein interactions. In this pipeline, we incorporated ECD and GIAO NMR calculations coupled with a DP4+ probability measure, enabling the structure revision of phenazinolin D (4), izumiphenazine A (5), and baraphenazine G (7) and the structure characterization of two new diphenazines, baraphenazine H (3) and izumiphenazine E (6). Importantly, through these efforts, we demonstrate the feasibility of NMR/DP4+ analysis for the determination of phenol positions in phenazine-based molecules, further expanding the limits of computational methods for the structure elucidation of complex natural products.


Subject(s)
Biological Products , Molecular Structure , Biological Products/chemistry , Phenol , Magnetic Resonance Spectroscopy
7.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37292917

ABSTRACT

Eukaryotic translation initiation factor 4E (eIF4E) is an RNA-binding protein that binds to the m 7 GpppX-cap at the 5' terminus of coding mRNAs to initiate cap-dependent translation. While all cells require cap-dependent translation, cancer cells become addicted to enhanced translational capacity, driving the production of oncogenic proteins involved in proliferation, evasion of apoptosis, metastasis, and angiogenesis among other cancerous phenotypes. eIF4E is the rate-limiting translation factor and its activation has been shown to drive cancer initiation, progression, metastasis, and drug resistance. These findings have established eIF4E as a translational oncogene and promising, albeit challenging, anti-cancer therapeutic target. Although significant effort has been put forth towards inhibiting eIF4E, the design of cell-permeable, cap-competitive inhibitors remains a challenge. Herein, we describe our work towards solving this long-standing challenge. By employing an acyclic nucleoside phosphonate prodrug strategy, we report the synthesis of cell-permeable inhibitors of eIF4E binding to capped mRNA to inhibit cap-dependent translation.

8.
Biochemistry ; 62(11): 1725-1734, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37130292

ABSTRACT

Dicer is an RNase III enzyme that is responsible for the maturation of small RNAs such as microRNAs. As Dicer's cleavage products play key roles in promoting cellular homeostasis through the fine-tuning of gene expression, dysregulation of Dicer activity can lead to several human diseases, including cancers. Mutations in Dicer have been found to induce tumorigenesis and lead to the development of a rare pleiotropic tumor predisposition syndrome found in children and young adults called DICER1 syndrome. These patients harbor germline and somatic mutations in Dicer that lead to defective microRNA processing and activity. While most mutations occur within Dicer's catalytic RNase III domains, alterations within the Platform-PAZ (Piwi-Argonaute-Zwille) domain also cause loss of microRNA production. Using a combination of in vitro biochemical and cellular studies, we characterized the effect of disease-relevant Platform-PAZ-associated mutations on the processing of a well-studied oncogenic microRNA, pre-microRNA-21. We then compared these results to those of a representative from another Dicer substrate class, the small nucleolar RNA, snord37. From this analysis, we provide evidence that mutations within the Platform-PAZ domain result in differential impacts on RNA binding and processing, adding new insights into the complexities of Dicer processing of small RNA substrates.


Subject(s)
MicroRNAs , RNA, Small Nucleolar , Child , Humans , RNA, Small Nucleolar/genetics , Ribonuclease III/chemistry , MicroRNAs/chemistry , Mutation , DEAD-box RNA Helicases/genetics
9.
ACS Med Chem Lett ; 14(4): 345-349, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37077389

ABSTRACT

On the occasion of the 2023 International Women's Day on March 8, 2023, we want to celebrate and highlight the contributions of many women volunteers in the American Chemical Society Division of Medicinal Chemistry (ACS MEDI).

10.
J Med Chem ; 66(6): 3651-3655, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36884261

ABSTRACT

On the occasion of the 2023 International Women's Day on March 8, 2023, we want to celebrate and highlight the contributions of many women volunteers in the American Chemical Society Division of Medicinal Chemistry (ACS MEDI).


Subject(s)
Chemistry, Pharmaceutical , Humans , Female , United States
11.
ACS Med Chem Lett ; 14(3): 251-259, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36923915

ABSTRACT

The surprising discovery that RNAs are the predominant gene products to emerge from the human genome catalyzed a renaissance in RNA biology. It is now well-understood that RNAs act as more than just a messenger and comprise a large and diverse family of ribonucleic acids of differing sizes, structures, and functions. RNAs play expansive roles in the cell, contributing to the regulation and fine-tuning of nearly all aspects of gene expression and genome architecture. In line with the significance of these functions, we have witnessed an explosion in discoveries connecting RNAs with a variety of human diseases. Consequently, the targeting of RNAs, and more broadly RNA biology, has emerged as an untapped area of drug discovery, making the search for RNA-targeted therapeutics of great interest. In this Microperspective, I highlight contemporary learnings in the field and present my views on how to catapult us toward the systematic discovery of RNA-targeted medicines.

12.
Biochemistry ; 62(1): 1-16, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36534787

ABSTRACT

The RNase III endoribonuclease Dicer was discovered to be associated with cleavage of double-stranded RNA in 2001. Since then, many advances in our understanding of Dicer function have revealed that the enzyme plays a major role not only in microRNA biology but also in multiple RNA interference-related pathways. Yet, there is still much to be learned regarding Dicer structure-function in relation to how Dicer and Dicer-like enzymes initiate their cleavage reaction and release the desired RNA product. This Perspective describes the latest advances in Dicer structural studies, expands on what we have learned from this data, and outlines key gaps in knowledge that remain to be addressed. More specifically, we focus on human Dicer and highlight the intermediate processing steps where there is a lack of structural data to understand how the enzyme traverses from pre-cleavage to cleavage-competent states. Understanding these details is necessary to model Dicer's function as well as develop more specific microRNA-targeted therapeutics for the treatment of human diseases.


Subject(s)
MicroRNAs , Ribonuclease III , Humans , Ribonuclease III/chemistry , MicroRNAs/chemistry , RNA, Double-Stranded
13.
Chembiochem ; 23(24): e202200508, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36322053

ABSTRACT

Advancements in methods for identifying RNA-protein interactions (RPIs) on a large scale has necessitated the development of assays for validation of these interactions, particularly in living cells. We previously reported the development of RiPCA (RNA interaction with protein-mediated complementation assay) to enable the cellular detection of the well-characterized interaction between the pre-microRNA, pre-let-7, and its RNA-binding protein (RBP) partner Lin28. In this study, the applicability of RiPCA for the detection of putative pre-miRNA-protein interactions was explored using an improved RiPCA protocol, termed RiPCA 2.0. RiPCA 2.0 was adapted to detect the sequence specificity of the RBPs hnRNP A1, Msi1, and Msi2 for reported pre-microRNA binding partners. Additionally, the ability of RiPCA 2.0 to detect site-specific binding was explored. Collectively, this work highlights the versatility of RiPCA 2.0 in detecting cellular RPIs.


Subject(s)
MicroRNAs , RNA-Binding Proteins , RNA-Binding Proteins/chemistry , MicroRNAs/metabolism
14.
Curr Protoc ; 2(2): e358, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35113480

ABSTRACT

Increasing interest in studying and modulating the interactions between RNAs and their RNA-binding proteins has indicated the need for enabling technologies. Existing means of detecting RNA-protein interactions (RPIs) are often limited to biochemical or post-lysis methods or cell-based methods that require the addition of an RNA-based affinity tag, such as the MS2 hairpin, precluding them from use in detecting small or highly processed RNAs. Taking advantage of bioorthogonal chemistry- and split-luciferase-based technologies, we developed an assay for the detection of RPIs in live cells. This article details the protocol and design considerations for RiPCA, or RNA interaction with Protein-mediated Complementation Assay. © 2022 Wiley Periodicals LLC.


Subject(s)
Biological Assay , RNA , Luciferases/metabolism , RNA-Binding Proteins/genetics
16.
ACS Med Chem Lett ; 12(6): 851-853, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34141054
17.
ACS Med Chem Lett ; 12(6): 878-886, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34141065

ABSTRACT

MicroRNAs (miRNAs) are a family of small noncoding RNAs that regulate gene expression. Due to their important activity in the fine-tuning of protein translation, abnormal expression of miRNAs has been linked to many human diseases, making the targeting of miRNAs attractive as a novel therapeutic strategy. Accordingly, researchers have been heavily engaged in the discovery of small molecule modulators of miRNAs. With an interest in the identification of new chemical space for targeting miRNAs, we developed a high-throughput screening (HTS) technology, catalytic enzyme-linked click chemistry assay (cat-ELCCA), aimed at the discovery of small molecule ligands for pre-miR-21, a miRNA that is frequently overexpressed in human cancers. From our HTS campaign, we found that natural products, a source of many impactful human medicines, may be a promising source of potential pre-miR-21-selective maturation inhibitors. Herein we describe our first efforts in natural product inhibitor discovery leading to the identification of a depsipeptide class of natural products as RNA-binding inhibitors of Dicer-mediated miRNA processing.

18.
RSC Chem Biol ; 2(1): 241-247, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33817642

ABSTRACT

Recent efforts in genome-wide sequencing and proteomics have revealed the fundamental roles that RNA-binding proteins (RBPs) play in the life cycle and function of coding and non-coding RNAs. While these methodologies provide a systems-level view of the networking of RNA and proteins, approaches to enable the cellular validation of discovered interactions are lacking. Leveraging the power of bioorthogonal chemistry- and split-luciferase-based assay technologies, we have devised a conceptually new assay for the live-cell detection of RNA-protein interactions (RPIs), RNA interaction with Protein-mediated Complementation Assay, or RiPCA. As proof-of-concept, we utilized the interaction of the pre-microRNA, pre-let-7, with its binding partner, Lin28. Using this system, we have demonstrated the selective detection of the pre-let-7-Lin28 RPI in both the cytoplasm and nucleus. Furthermore, we determined that this technology can be used to discern relative affinities for specific sequences as well as of individual RNA binding domains. Thus, RiPCA has the potential to serve as a useful tool in supporting the investigation of cellular RPIs.

19.
ACS Med Chem Lett ; 11(9): 1659-1660, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32944131
20.
Eur J Med Chem ; 205: 112655, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32739551

ABSTRACT

Eukaryotic translation initiation factor 4E (eIF4E) has emerged as a promising cancer therapeutic target due to its role in the initiation of cap-dependent translation, a process that is accelerated during tumorigenesis. To regulate the initiation of cap-dependent translation, eIF4E participates in protein-protein interactions (PPI) with binding partners, 4E-BP1 and eIF4G, which act as an inhibitor and stimulator of translation, respectively. As both of these proteins interact with eIF4E by utilizing a short, α-helical stretch of amino acids, our laboratory has been working to develop helical mimetics of these proteins, in particular 4E-BP1, to inhibit eIF4E PPIs. Herein, we describe our continued efforts in this area and report the development and characterization of a cell-penetrant lactam stapled peptide for targeting cellular eIF4E.


Subject(s)
Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , Eukaryotic Initiation Factor-4E/metabolism , Lactams/chemistry , Cell Line, Tumor , Humans , Molecular Targeted Therapy , Protein Binding/drug effects , Protein Biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...