Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Res Commun ; 47(2): 495-509, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36538151

ABSTRACT

Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) is one of the causative agents of equine endometritis. In this study, a panel of different bacterial species, and colonies derived from bacteriological cultures of 38 clinical samples, were subjected to Loop-Mediated Isothermal Amplification (LAMP) assay and PCR, followed by high-resolution melt (HRM) curve analysis. All clinical samples were genotyped into three distinct groups based on HRM curve analysis. Differences in melting curve profiles were a reflection of DNA variation in sorD gene which was confirmed by DNA sequencing. A mathematical model based on Genetic Confidence Percentage (GCP) was used in HRM curve analysis and a cut-off point value was established which differentiated S. zooepidemicus isolates without requiring visual interpretation of curve profiles. The accuracy of PCR-HRM and bacterial culture in detection of S. zooepidemicus were identical with 100% sensitivity and specificity, while LAMP assay had similar specificity but a lower sensitivity (89.5%). PCR-HRM and LAMP assay provided an effective detection method with a turn-around time of six hours for PCR-HRM and 120 min for LAMP assay, compared to a minimum three days that was required when routine bacteriological culture method was used. In summary, results indicate that LAMP had the quickest turnaround, and HRM curve analysis could potentially be used for genotyping without DNA sequencing. Any mare suspected of endometritis will benefit from developed rapid diagnostic tests for detection of S. zooepidemicus and proper treatment prior to being bred and will mitigate unnecessary treatment and antibiotic resistance.


Subject(s)
Endometritis , Horse Diseases , Streptococcal Infections , Streptococcus equi , Horses , Animals , Female , Endometritis/diagnosis , Endometritis/veterinary , Streptococcus equi/genetics , Streptococcal Infections/diagnosis , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology , Colorimetry/veterinary , Polymerase Chain Reaction/veterinary , Horse Diseases/diagnosis
2.
Chem Sci ; 6(10): 5928-5937, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-29861916

ABSTRACT

Monitoring intracellular pH has drawn much attention due to its undeniably important function in cells. The widespread development of fluorescent imaging techniques makes pH sensitive fluorescent dyes valuable tools, especially red-emitting dyes which help to avoid the overcrowded green end of the spectral band. Herein, we present H-Rubies, a family of pH sensors based on a phenol moiety and a X-rhodamine fluorophore that display a bright red fluorescence upon acidification with pKa values spanning from 4 to 9. Slight structural modifications led to dramatic changes in their physicochemical properties and a relationship between their structures, their ability to form H-aggregates, and their apparent pKa was established. While molecular form H-Rubies can be used to monitor mitochondrial acidification of glioma cells, their functionalised forms were linked via click chemistry to dextrans or microbeads containing a near infrared Cy5 (Alexa-647) in order to provide ratiometric systems that were used to measure respectively the phagosomal and endosomal pH in macrophages (RAW 264.7 cells) using flow cytometry.

SELECTION OF CITATIONS
SEARCH DETAIL
...