Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cell Rep ; 38(8): 110417, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35196489

ABSTRACT

Androgen receptor (AR) signaling is the central driver of prostate cancer across disease states. While androgen deprivation therapy (ADT) is effective in the initial treatment of prostate cancer, resistance to ADT or to next-generation androgen pathway inhibitors invariably arises, most commonly through the re-activation of the AR axis. Thus, orthogonal approaches to inhibit AR signaling in advanced prostate cancer are essential. Here, via genome-scale CRISPR-Cas9 screening, we identify protein arginine methyltransferase 1 (PRMT1) as a critical mediator of AR expression and signaling. PRMT1 regulates the recruitment of AR to genomic target sites and the inhibition of PRMT1 impairs AR binding at lineage-specific enhancers, leading to decreased expression of key oncogenes, including AR itself. In addition, AR-driven prostate cancer cells are uniquely susceptible to combined AR and PRMT1 inhibition. Our findings implicate PRMT1 as a key regulator of AR output and provide a preclinical framework for co-targeting of AR and PRMT1 in advanced prostate cancer.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Male , Prostate/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Repressor Proteins/metabolism , Signal Transduction
2.
Cell Rep ; 38(1): 110190, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34986355

ABSTRACT

Translocation renal cell carcinoma (tRCC) is a poorly characterized subtype of kidney cancer driven by MiT/TFE gene fusions. Here, we define the landmarks of tRCC through an integrative analysis of 152 patients with tRCC identified across genomic, clinical trial, and retrospective cohorts. Most tRCCs harbor few somatic alterations apart from MiT/TFE fusions and homozygous deletions at chromosome 9p21.3 (19.2% of cases). Transcriptionally, tRCCs display a heightened NRF2-driven antioxidant response that is associated with resistance to targeted therapies. Consistently, we find that outcomes for patients with tRCC treated with vascular endothelial growth factor receptor inhibitors (VEGFR-TKIs) are worse than those treated with immune checkpoint inhibitors (ICI). Using multiparametric immunofluorescence, we find that the tumors are infiltrated with CD8+ T cells, though the T cells harbor an exhaustion immunophenotype distinct from that of clear cell RCC. Our findings comprehensively define the clinical and molecular features of tRCC and may inspire new therapeutic hypotheses.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Microphthalmia-Associated Transcription Factor/genetics , Oncogene Proteins, Fusion/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Gene Expression Regulation, Neoplastic , Gene Fusion/genetics , Humans , Immune Checkpoint Inhibitors/therapeutic use , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Oncogene Proteins, Fusion/metabolism , Protein Kinase Inhibitors/therapeutic use , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors
3.
iScience ; 24(10): 103127, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34622172

ABSTRACT

Little is known about the diversity and function of adipose tissue nerves, due in part to the inability to effectively visualize the tissue's diverse nerve subtypes and the patterns of innervation across an intact depot. The tools to image and quantify adipose tissue innervation are currently limited. Here, we present a method of tissue processing that decreases tissue thickness in the z-axis while leaving cells intact for subsequent immunostaining. This was combined with autofluorescence quenching techniques to permit intact whole tissues to be mounted on slides and imaged by confocal microscopy, with a complementary means to perform whole tissue neurite density quantification after capture of tiled z-stack images. Additionally, we demonstrate how to visualize nerve terminals (the neuro-adipose nexus) in intact blocks of adipose tissue without z-depth reduction. We have included examples of data demonstrating nerve subtypes, neurovascular interactions, label-free imaging of collagen, and nerve bundle digital cross-sections.

4.
Nat Commun ; 12(1): 4245, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34253722

ABSTRACT

Tuberous Sclerosis Complex (TSC) is caused by TSC1 or TSC2 mutations, resulting in hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1). Transcription factor EB (TFEB), a master regulator of lysosome biogenesis, is negatively regulated by mTORC1 through a RAG GTPase-dependent phosphorylation. Here we show that lysosomal biogenesis is increased in TSC-associated renal tumors, pulmonary lymphangioleiomyomatosis, kidneys from Tsc2+/- mice, and TSC1/2-deficient cells via a TFEB-dependent mechanism. Interestingly, in TSC1/2-deficient cells, TFEB is hypo-phosphorylated at mTORC1-dependent sites, indicating that mTORC1 is unable to phosphorylate TFEB in the absence of the TSC1/2 complex. Importantly, overexpression of folliculin (FLCN), a GTPase activating protein for RAGC, increases TFEB phosphorylation at the mTORC1 sites in TSC2-deficient cells. Overexpression of constitutively active RAGC is sufficient to relocalize TFEB to the cytoplasm. These findings establish the TSC proteins as critical regulators of lysosomal biogenesis via TFEB and RAGC and identify TFEB as a driver of the proliferation of TSC2-deficient cells.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Lysosomes/metabolism , Monomeric GTP-Binding Proteins/metabolism , Organelle Biogenesis , Tuberous Sclerosis Complex 2 Protein/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Carcinoma, Renal Cell/pathology , Cell Nucleus/metabolism , Cell Proliferation , Female , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Humans , Kidney Neoplasms/pathology , Lysosomes/ultrastructure , Mice , Mice, Inbred NOD , Mice, SCID , Phosphorylation , Phosphoserine/metabolism , Protein Transport , Proto-Oncogene Proteins/metabolism , Transcription, Genetic , Tuberous Sclerosis Complex 2 Protein/deficiency , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...