Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 13374, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35927440

ABSTRACT

Leptin exerts its effects on energy balance by inhibiting food intake and increasing energy expenditure via leptin receptors in the hypothalamus. While LepR neurons in the arcuate nucleus of the hypothalamus, the primary target of leptin, have been extensively studied, LepR neurons in other hypothalamic nuclei remain understudied. LepR neurons in the lateral hypothalamus contribute to leptin's effects on food intake and reward, but due to the low abundance of this population it has been difficult to study their molecular profile and responses to energy deficit. We here explore the transcriptome of LepR neurons in the LH and their response to energy deficit. Male LepR-Cre mice were injected in the LH with an AAV carrying Cre-dependent L10:GFP. Few weeks later the hypothalami from fed and food-restricted (24-h) mice were dissected and the TRAP protocol was performed, for the isolation of translating mRNAs from LepR cells in the LH, followed by RNA sequencing. After mapping and normalization, differential expression analysis was performed with DESeq2. We confirm that the isolated mRNA is enriched in LepR transcripts and other known neuropeptide markers of LepRLH neurons, of which we investigate the localization patterns in the LH. We identified novel markers of LepRLH neurons with association to energy balance and metabolic disease, such as Acvr1c, Npy1r, Itgb1, and genes that are differentially regulated by food deprivation, such as Fam46a and Rrad. Our dataset provides a reliable and extensive resource of the molecular makeup of LH LepR neurons and their response to food deprivation.


Subject(s)
Hypothalamic Area, Lateral , Receptors, Leptin , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Energy Metabolism/genetics , Hypothalamic Area, Lateral/metabolism , Hypothalamus/metabolism , Leptin/metabolism , Male , Mice , Neurons/metabolism , Receptors, Leptin/genetics , Receptors, Leptin/metabolism
2.
Sci Rep ; 9(1): 11146, 2019 07 31.
Article in English | MEDLINE | ID: mdl-31366942

ABSTRACT

Targeting specific neuronal cell types is a major challenge for unraveling their function and utilizing specific cells for gene therapy strategies. Viral vector tools are widely used to target specific cells or circuits for these purposes. Here, we use viral vectors with short promoters of neuropeptide genes to target distinct neuronal populations in the hypothalamus of rats and mice. We show that lowering the amount of genomic copies is effective in increasing specificity of a melanin-concentrating hormone promoter. However, since too low titers reduce transduction efficacy, there is an optimal titer for achieving high specificity and sufficient efficacy. Other previously identified neuropeptide promoters as those for oxytocin and orexin require further sequence optimization to increase target specificity. We conclude that promoter-driven viral vectors should be used with caution in order to target cells specifically.


Subject(s)
Genetic Vectors/administration & dosage , Hypothalamus/drug effects , Neurons/drug effects , Neuropeptides/administration & dosage , Promoter Regions, Genetic/genetics , Animals , Hypothalamic Hormones/genetics , Melanins/genetics , Mice , Mice, Inbred C57BL , Orexins/genetics , Oxytocin/genetics , Pituitary Hormones/genetics , Rats , Rats, Long-Evans , Rats, Wistar
3.
Int J Obes (Lond) ; 38(4): 610-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23884084

ABSTRACT

BACKGROUND: Rats that have restricted access to food at a fixed time point of the circadian phase display high levels of food anticipatory activity (FAA). The orexigenic hormone ghrelin has been implicated in the regulation of FAA. However, it is not known via which brain area ghrelin exerts this effect. Growth hormone secretagogue receptor 1a (GHS-R1a) is highly expressed in the hypothalamus, including the dorsomedial hypothalamus (DMH) and the ventromedial hypothalamus (VMH). These two hypothalamic areas have been reported to play a role in FAA. AIM OF THE STUDY: To examine the role of GHS-R1a signaling in the DMH and VMH in FAA. DESIGN: Adeno-associated virus expressing a shRNA directed against GHS-R1a was used to establish local knockdown of GHS-R1a in the DMH and VMH in rats. Rats were subsequently subjected to a restricted feeding schedule (RFS). RESULTS: Under ad libitum conditions, knockdown of GHS-R1a in the VMH increased food intake and body weight gain. In addition, GHS-R1a knockdown in VMH and DMH reduced body temperature and running wheel activity (RWA). When rats were subjected to a RFS, the main effect of GHS-R1a knockdown in both DMH and VMH was a decrease in RWA and an attenuation of body weight loss. Rats with knockdown of GHS-R1a in DMH and VMH showed a delay in onset of FAA. In addition, GHS-R1a knockdown in DMH resulted in a reduction of FAA amplitude. CONCLUSION: This is the first study to investigate the effect of local hypothalamic knockdown of GHS-R1a on FAA. Our results implicate hypothalamic GHS-R1a signaling in the regulation of FAA. Nevertheless, some FAA remained, suggesting that a distributed network of brain areas and signaling pathways is involved in the development of FAA.


Subject(s)
Eating , Feeding Behavior , Ghrelin/metabolism , Hypothalamus/metabolism , Receptors, Ghrelin/metabolism , Weight Gain , Animals , Body Temperature , Body Weight , Male , Rats , Rats, Wistar , Signal Transduction
4.
Int J Obes (Lond) ; 35(5): 629-41, 2011 May.
Article in English | MEDLINE | ID: mdl-20733584

ABSTRACT

OBJECTIVE: Reduction of melanocortin signaling in the brain results in obesity. However, where in the brain reduced melanocortin signaling mediates this effect is poorly understood. DESIGN: We determined the effects of long-term inhibition of melanocortin receptor activity in specific brain regions of the rat brain. Melanocortin signaling was inhibited by injection of a recombinant adeno-associated viral (rAAV) vector that overexpressed Agouti-related peptide (AgRP) into the paraventricular nucleus (PVN), the ventromedial hypothalamus (VMH), the lateral hypothalamus (LH) or the accumbens shell (Acc). RESULTS: Overexpression of AgRP in the rat PVN, VMH or LH increased bodyweight, the percentage of white adipose tissue, plasma leptin and insulin concentrations and food intake. Food intake was mainly increased because of an increase in meal size in the light and dark phases, after overexpression of AgRP in the PVN, LH or VMH. Overexpression of AgRP in the PVN or VMH reduced average body core temperature in the dark on day 40 post injection, whereas AgRP overexpression in the LH did not affect temperature. In addition, overexpression of AgRP in the PVN, LH or VMH did not significantly alter mRNA expression of AgRP, neuropeptide Y (NPY), pro-opiomelanocortin (POMC) or suppressor of cytokine signaling 3 (SOCS3) in the arcuate. Overexpression of AgRP in the Acc did not have any effect on the measured parameters. CONCLUSIONS: Reduction of melanocortin signaling in several hypothalamic regions increased meal size. However, there were brain area-specific effects on other parameters such as core temperature and plasma leptin concentrations. In a previous study, where NPY was overexpressed with an rAAV vector in the PVN and LH, meal frequency and meal size were increased respectively, whereas locomotor activity was reduced by NPY overexpression at both nuclei. Taken together, AgRP and NPY have complementary roles in energy balance.


Subject(s)
Agouti-Related Protein/metabolism , Body Weight/physiology , Energy Metabolism/physiology , Hypothalamus/metabolism , Obesity/metabolism , Receptors, Melanocortin/physiology , Animals , Cell Line , Eating/physiology , Hypothalamic Area, Lateral/metabolism , Hypothalamus/physiology , Male , Midline Thalamic Nuclei/metabolism , Nucleus Accumbens/metabolism , Obesity/physiopathology , Rats , Rats, Wistar , Receptors, Melanocortin/antagonists & inhibitors , Ventromedial Hypothalamic Nucleus/metabolism
5.
J Biol Chem ; 276(2): 931-6, 2001 Jan 12.
Article in English | MEDLINE | ID: mdl-11024027

ABSTRACT

The activity of melanocortin receptors (MCR) is regulated by melanocortin peptide agonists and by the endogenous antagonists, Agouti protein and AgRP (Agouti-related protein). To understand how the selectivity for these structurally unrelated agonists and antagonist is achieved, chimeric and mutants MC3R and MC4R were expressed in cell lines and pharmacologically analyzed. A region containing the third extracellular loop, EC3, of MC4R was essential for selective Agouti protein antagonism. In addition, this part of MC4R, when introduced in MC3R, conferred Agouti protein antagonism. Further mutational analysis of this region of MC4R demonstrated that Tyr(268) was required for the selective interaction with Agouti protein, because a profound loss of the ability of Agouti protein to inhibit (125)I-labeled [Nle(4),d-Phe(7)]alpha-melanocyte-stimulating hormone (MSH) binding was observed by the single mutation of Tyr(268) to Ile. This same residue conferred selectivity for the MC4R selective agonist, [d-Tyr(4)]MT-II, whereas it inhibited interaction with the MC3R-selective agonist, [Nle(4)]Lys-gamma(2)-MSH. Conversely, mutation of Ile(265) in MC3 (the corresponding residue of Tyr(268)) to Tyr displayed a gain of affinity for [d-Tyr(4)]MT-II, but not for Agouti protein, and a loss of affinity for [Nle(4)]Lys-gamma(2)-MSH as compared with wild-type MC3R. This single amino acid mutation thus confers the selectivity of MC3R toward a pharmacological profile like that observed for MC4R agonists but not for the antagonist, Agouti protein. Thus, selectivity for structurally unrelated ligands with opposite activities is achieved in a similar manner for MC4R but not for MC3R.


Subject(s)
Intercellular Signaling Peptides and Proteins , Proteins/physiology , Receptors, Corticotropin/chemistry , Receptors, Corticotropin/physiology , alpha-MSH/pharmacology , Agouti Signaling Protein , Agouti-Related Protein , Amino Acid Sequence , Amino Acid Substitution , Animals , Binding Sites , Cell Line , Humans , Kinetics , Melanocyte-Stimulating Hormones/antagonists & inhibitors , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Structure, Secondary , Rats , Receptor, Melanocortin, Type 4 , Recombinant Fusion Proteins , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Substrate Specificity , Transfection , alpha-MSH/antagonists & inhibitors , alpha-MSH/physiology
6.
Cell Calcium ; 20(1): 1-9, 1996 Jul.
Article in English | MEDLINE | ID: mdl-8864566

ABSTRACT

Digital-imaging microscopy of Fura-2-loaded Chinese hamster ovary cells, stably expressing the cholecystokinin-A receptor, revealed that both the C-terminal octapeptide of cholecystokinin (CCKB) and its analogue JMV-180, which acts as an agonist at the high-affinity CCK-A receptor, recruited CHO-CCK-A cells dose-dependently in terms of receptor-mediated Ca2+ mobilization. Agonist-evoked cell recruitment was inhibited by short-term (10 min) pretreatment with 0.1 microM 12-O-tetradecanoylphorbol 13-acetate (TPA). In the case of CCKB, inhibition was overcome with increasing of the hormone concentration. In contrast, increasing of the JMV-180 concentration did not reverse the inhibitory action of TPA. CHO-CCK-A cells gradually regained their responsiveness to JMV-180 during prolonged TPA pretreatment. Complete recovery was observed within 1 h following addition of TPA. Western blot analysis using antibodies directed against the various PKC isotypes revealed that recovery was paralleled by the disappearance of PKC-alpha. Surprisingly, short-term (10 min) TPA pretreatment virtually completely inhibited the formation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in response to CCKB concentrations at which the effect on cell recruitment was not affected by short term phorbol ester pretreatment. Together with the finding that JMV-180 does not detectably increase the cellular Ins(1,4,5)P3 content, this suggests a large overproduction of this second messenger by CCKB concentrations supramaximal in terms of cell recruitment. Again, full responsiveness was observed after long term TPA pretreatment. The present observations are in agreement with the idea that in CHO-CCK-A cells activation of PKC-alpha leads to inhibition of agonist-evoked Ca2+ mobilization through inhibition of receptor-stimulated Ins(1,4,5)P3 formation.


Subject(s)
Calcium/metabolism , Receptors, Cholecystokinin/antagonists & inhibitors , Receptors, Cholecystokinin/physiology , Tetradecanoylphorbol Acetate/pharmacology , Animals , CHO Cells/chemistry , Cricetinae , Down-Regulation , Inositol 1,4,5-Trisphosphate/metabolism , Isoenzymes/physiology , Protein Kinase C/physiology , Receptor, Cholecystokinin A , Time Factors
7.
Cell Calcium ; 18(6): 471-83, 1995 Dec.
Article in English | MEDLINE | ID: mdl-8746946

ABSTRACT

Digital-imaging microscopy of Fura-2-loaded pancreatic acinar cells revealed that the C-terminal octapeptide of cholecystokinin (CCK8) dose-dependently recruited 94% of freshly isolated acinar cells in terms of receptor-evoked Ca2+ mobilization. Maximal and half-maximal cell-recruitment were reached with 0.1 nM and 16.8 pM CCK8, respectively. The upstroke of the dose-recruitment curve consisted of cells displaying oscillatory changes in free cytosolic Ca2+ concentration ([Ca2+]i). After having reached its maximum, the percentage oscillating cells dose-dependently decreased upon further increasing of the CCK8 concentration. Pretreatment of the acinar cells with 0.1 microM TPA caused a rightward shift of the dose-recruitment curve but did not change the maximal effect of CCK8 on the recruitment of oscillating cells. Half-maximal recruitment was obtained with 287 pM CCK8. This observation demonstrates that high levels of protein kinase C activation do not inhibit Ca2+ oscillations at a level downstream to receptor activation. Moreover, this observation demonstrates that protein kinase C-mediated inhibition of Ca2+ oscillations evoked by submaximal CCK8 concentrations occurs at the receptor level, converting it from a high-affinity state into a low-affinity state. This conclusion is supported by the observation that TPA completely inhibited the recruitment of acinar cells in response to the high-affinity receptor agonist JMV-180. The inhibitory action of TPA on CCK8-evoked cell-recruitment was paralleled by an inhibitory effect of the phorbol ester on the CCK8-evoked peak increase in average inositol trisphosphate concentration in a population of acinar cells. This observation indicates that low concentrations of CCK8 interact with the high-affinity CCK receptor to increase [Ca2+]i through the intermediation of inositol trisphosphate.


Subject(s)
Calcium/metabolism , Inositol 1,4,5-Trisphosphate/antagonists & inhibitors , Pancreas/cytology , Protein Kinase C/physiology , Receptors, Cholecystokinin/metabolism , Animals , Cytosol/enzymology , Dose-Response Relationship, Drug , Inositol 1,4,5-Trisphosphate/agonists , Inositol 1,4,5-Trisphosphate/biosynthesis , Pancreas/chemistry , Periodicity , Rabbits , Signal Processing, Computer-Assisted , Signal Transduction/physiology , Sincalide/analogs & derivatives , Sincalide/pharmacology , Tetradecanoylphorbol Acetate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...