Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Nature ; 616(7957): 553-562, 2023 04.
Article in English | MEDLINE | ID: mdl-37055640

ABSTRACT

Circulating tumour DNA (ctDNA) can be used to detect and profile residual tumour cells persisting after curative intent therapy1. The study of large patient cohorts incorporating longitudinal plasma sampling and extended follow-up is required to determine the role of ctDNA as a phylogenetic biomarker of relapse in early-stage non-small-cell lung cancer (NSCLC). Here we developed ctDNA methods tracking a median of 200 mutations identified in resected NSCLC tissue across 1,069 plasma samples collected from 197 patients enrolled in the TRACERx study2. A lack of preoperative ctDNA detection distinguished biologically indolent lung adenocarcinoma with good clinical outcome. Postoperative plasma analyses were interpreted within the context of standard-of-care radiological surveillance and administration of cytotoxic adjuvant therapy. Landmark analyses of plasma samples collected within 120 days after surgery revealed ctDNA detection in 25% of patients, including 49% of all patients who experienced clinical relapse; 3 to 6 monthly ctDNA surveillance identified impending disease relapse in an additional 20% of landmark-negative patients. We developed a bioinformatic tool (ECLIPSE) for non-invasive tracking of subclonal architecture at low ctDNA levels. ECLIPSE identified patients with polyclonal metastatic dissemination, which was associated with a poor clinical outcome. By measuring subclone cancer cell fractions in preoperative plasma, we found that subclones seeding future metastases were significantly more expanded compared with non-metastatic subclones. Our findings will support (neo)adjuvant trial advances and provide insights into the process of metastatic dissemination using low-ctDNA-level liquid biopsy.


Subject(s)
Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Mutation , Neoplasm Metastasis , Small Cell Lung Carcinoma , Humans , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Cohort Studies , Lung Neoplasms/blood , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Neoplasm Metastasis/diagnosis , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Phylogeny , Small Cell Lung Carcinoma/pathology , Liquid Biopsy
2.
J Mol Diagn ; 22(4): 437-446, 2020 04.
Article in English | MEDLINE | ID: mdl-32036092

ABSTRACT

A problematic aspect of massive parallel sequencing is that somatic mutations and viral loads are typically quantified as a fraction relative to wild-type human DNA, yet wild-type levels vary with diverse biologic and preanalytic interferences. A novel strategy was devised to quantify target analytes in copies per mL of plasma after normalizing for read counts of spiked DNAs. Five synthetic DNAs (called EndoGenus spikes) were added to plasma before library preparation (modified ArcherDX LiquidPlex 28). By normalizing to the fractional recovery of EndoGenus spike reads, numerical values for each disease marker were reportable in units of copies per mL. To show how well this system operates, replicate assays were performed on 40 mock plasmas having 23 engineered mutations and on 21 natural plasmas. Reads for all five EndoGenus spikes were recovered (means, 313 and 376 copies/mL in mock and natural plasmas, respectively). Normalizing read counts for the proportional recovery of spikes helped control for variables in the multistep protocol, reducing the CV in replicate tests from 34% to 22% for mutations and from 25% to 7% for viral loads. In conclusion, the EndoGenus system is useful for evaluating efficiency of the total test system and for precisely quantifying target molecules. This system may benefit patients being monitored for disease burden while also tracking emerging subclones.


Subject(s)
Biomarkers, Tumor , Cell-Free Nucleic Acids , Circulating Tumor DNA , DNA, Neoplasm , DNA, Viral , Genome, Viral , High-Throughput Nucleotide Sequencing , Alleles , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation , Neoplasms/diagnosis , Neoplasms/genetics , Real-Time Polymerase Chain Reaction
3.
J Mol Diagn ; 21(4): 658-676, 2019 07.
Article in English | MEDLINE | ID: mdl-31055023

ABSTRACT

We conducted a multilaboratory assessment to determine the suitability of a new commercially available reference material with 40 cancer variants in a background of wild-type DNA at four different variant allele frequencies (VAFs): 2%, 0.50%, 0.125%, and 0%. The variants include single nucleotides, insertions, deletions, and two structural variations selected for their clinical importance and to challenge the performance of next-generation sequencing (NGS) methods. Fragmented DNA was formulated to simulate the size distribution of circulating wild-type and tumor DNA in a synthetic plasma matrix. DNA was extracted from these samples and characterized with different methods and multiple laboratories. The various extraction methods had differences in yield, perhaps because of differences in chemistry. Digital PCR assays were used to measure VAFs to compare results from different NGS methods. Comparable VAFs were observed across the different NGS methods. This multilaboratory assessment demonstrates that the new reference material is an appropriate tool to determine the analytical parameters of different measurement methods and to ensure their quality assurance.


Subject(s)
Biomarkers, Tumor , Circulating Tumor DNA , DNA, Neoplasm , Liquid Biopsy , Neoplasms/diagnosis , Neoplasms/genetics , Alleles , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Humans , Liquid Biopsy/methods , Liquid Biopsy/standards , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards , Quality Assurance, Health Care , Reference Standards
4.
Nucleic Acids Res ; 46(4): 1756-1776, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29240919

ABSTRACT

Histone deacetylase inhibitors (HDACIs) are known to alter gene expression by both up- and down-regulation of protein-coding genes in normal and cancer cells. However, the exact regulatory mechanisms of action remain uncharacterized. Here we investigated genome wide dose-dependent epigenetic and transcriptome changes in response to HDACI largazole in a transformed and a non-transformed cell line. Exposure to low nanomolar largazole concentrations (

Subject(s)
Depsipeptides/pharmacology , Enhancer Elements, Genetic , Histone Code/drug effects , Histone Deacetylase Inhibitors/pharmacology , Thiazoles/pharmacology , Acetylation , Cell Line , Cell Line, Transformed , Cytostatic Agents/pharmacology , Dose-Response Relationship, Drug , Enhancer Elements, Genetic/drug effects , Genome , Histone Deacetylases/physiology , Histones/metabolism , Oncogenes , Promoter Regions, Genetic , RNA Polymerase II/metabolism , RNA, Messenger/metabolism
5.
Nature ; 518(7540): 534-7, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25487155

ABSTRACT

A defining feature of vertebrates (craniates) is a pronounced head that is supported and protected by a robust cellular endoskeleton. In the first vertebrates, this skeleton probably consisted of collagenous cellular cartilage, which forms the embryonic skeleton of all vertebrates and the adult skeleton of modern jawless and cartilaginous fish. In the head, most cellular cartilage is derived from a migratory cell population called the neural crest, which arises from the edges of the central nervous system. Because collagenous cellular cartilage and neural crest cells have not been described in invertebrates, the appearance of cellular cartilage derived from neural crest cells is considered a turning point in vertebrate evolution. Here we show that a tissue with many of the defining features of vertebrate cellular cartilage transiently forms in the larvae of the invertebrate chordate Branchiostoma floridae (Florida amphioxus). We also present evidence that during evolution, a key regulator of vertebrate cartilage development, SoxE, gained new cis-regulatory sequences that subsequently directed its novel expression in neural crest cells. Together, these results suggest that the origin of the vertebrate head skeleton did not depend on the evolution of a new skeletal tissue, as is commonly thought, but on the spread of this tissue throughout the head. We further propose that the evolution of cis-regulatory elements near an ancient regulator of cartilage differentiation was a major factor in the evolution of the vertebrate head skeleton.


Subject(s)
Biological Evolution , Cartilage , Head , Lancelets/anatomy & histology , Lancelets/growth & development , Skull , Vertebrates/anatomy & histology , Animals , Cartilage/cytology , Cartilage/metabolism , Fibroblast Growth Factors/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics , Genes, Reporter/genetics , Lancelets/cytology , Larva/anatomy & histology , Larva/cytology , Models, Biological , Mouth/anatomy & histology , Neural Crest/cytology , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Signal Transduction , Skull/cytology , Skull/metabolism , Zebrafish/embryology , Zebrafish/genetics
6.
Genesis ; 51(7): 457-70, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23712931

ABSTRACT

The appearance of novel anatomic structures during evolution is driven by changes to the networks of transcription factors, signaling pathways, and downstream effector genes controlling development. The nature of the changes to these developmental gene regulatory networks (GRNs) is poorly understood. A striking test case is the evolution of the GRN controlling development of the neural crest (NC). NC cells emerge from the neural plate border (NPB) and contribute to multiple adult structures. While all chordates have a NPB, only in vertebrates do NPB cells express all the genes constituting the neural crest GRN (NC-GRN). Interestingly, invertebrate chordates express orthologs of NC-GRN components in other tissues, revealing that during vertebrate evolution new regulatory connections emerged between transcription factors primitively expressed in the NPB and genes primitively expressed in other tissues. Such interactions could have evolved by two mechanisms. First, transcription factors primitively expressed in the NPB may have evolved new DNA and/or cofactor binding properties (protein neofunctionalization). Alternately, cis-regulatory elements driving NPB expression may have evolved near genes primitively expressed in other tissues (cis-regulatory neofunctionalization). Here we discuss how gene duplication can, in principle, promote either form of neofunctionalization. We review recent published examples of interspecies gene-swap, or regulatory-element-swap, experiments that test both models. Such experiments have yielded little evidence to support the importance of protein neofunctionalization in the emergence of the NC-GRN, but do support the importance of novel cis-regulatory elements in this process. The NC-GRN is an excellent model for the study of gene regulatory and macroevolutionary innovation.


Subject(s)
Chordata/genetics , Evolution, Molecular , Gene Duplication , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Neural Crest/physiology , Neural Plate/physiology , Animals , Biological Evolution , Chordata/embryology , Gene Dosage , Neural Crest/growth & development , Neural Plate/growth & development , Phylogeny
7.
Development ; 139(22): 4220-31, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23034628

ABSTRACT

Neural crest cells generate a range of cells and tissues in the vertebrate head and trunk, including peripheral neurons, pigment cells, and cartilage. Neural crest cells arise from the edges of the nascent central nervous system, a domain called the neural plate border (NPB). NPB induction is known to involve the BMP, Wnt and FGF signaling pathways. However, little is known about how these signals are integrated to achieve temporally and spatially specific expression of genes in NPB cells. Furthermore, the timing and relative importance of these signals in NPB formation appears to differ between vertebrate species. Here, we use heat-shock overexpression and chemical inhibitors to determine whether, and when, BMP, Wnt and FGF signaling are needed for expression of the NPB specifiers pax3a and zic3 in zebrafish. We then identify four evolutionarily conserved enhancers from the pax3a and zic3 loci and test their response to BMP, Wnt and FGF perturbations. We find that all three signaling pathways are required during gastrulation for the proper expression of pax3a and zic3 in the zebrafish NPB. We also find that, although the expression patterns driven by the pax3a and zic3 enhancers largely overlap, they respond to different combinations of BMP, Wnt and FGF signals. Finally, we show that the combination of the two pax3a enhancers is less susceptible to signaling perturbations than either enhancer alone. Taken together, our results reveal how BMPs, FGFs and Wnts act cooperatively and redundantly through partially redundant enhancers to achieve robust, specific gene expression in the zebrafish NPB.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Fibroblast Growth Factors/metabolism , Homeodomain Proteins/biosynthesis , Neural Crest/metabolism , Neural Plate/metabolism , Paired Box Transcription Factors/biosynthesis , Transcription Factors/biosynthesis , Wnt Proteins/metabolism , Zebrafish Proteins/biosynthesis , Animals , Animals, Genetically Modified , Body Patterning/genetics , Body Patterning/physiology , Embryo, Nonmammalian/metabolism , Gastrulation , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Neural Crest/cytology , Neural Plate/cytology , PAX3 Transcription Factor , Paired Box Transcription Factors/genetics , Transcription Factors/genetics , Wnt Signaling Pathway , Zebrafish/embryology , Zebrafish Proteins/genetics
8.
PLoS Genet ; 8(9): e1002938, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23028350

ABSTRACT

The neural crest (NC) is a vertebrate-specific cell population that exhibits remarkable multipotency. Although derived from the neural plate border (NPB) ectoderm, cranial NC (CNC) cells contribute not only to the peripheral nervous system but also to the ectomesenchymal precursors of the head skeleton. To date, the developmental basis for such broad potential has remained elusive. Here, we show that the replacement histone H3.3 is essential during early CNC development for these cells to generate ectomesenchyme and head pigment precursors. In a forward genetic screen in zebrafish, we identified a dominant D123N mutation in h3f3a, one of five zebrafish variant histone H3.3 genes, that eliminates the CNC-derived head skeleton and a subset of pigment cells yet leaves other CNC derivatives and trunk NC intact. Analyses of nucleosome assembly indicate that mutant D123N H3.3 interferes with H3.3 nucleosomal incorporation by forming aberrant H3 homodimers. Consistent with CNC defects arising from insufficient H3.3 incorporation into chromatin, supplying exogenous wild-type H3.3 rescues head skeletal development in mutants. Surprisingly, embryo-wide expression of dominant mutant H3.3 had little effect on embryonic development outside CNC, indicating an unexpectedly specific sensitivity of CNC to defects in H3.3 incorporation. Whereas previous studies had implicated H3.3 in large-scale histone replacement events that generate totipotency during germ line development, our work has revealed an additional role of H3.3 in the broad potential of the ectoderm-derived CNC, including the ability to make the mesoderm-like ectomesenchymal precursors of the head skeleton.


Subject(s)
Histones/genetics , Neural Crest/growth & development , Skull/growth & development , Zebrafish , Animals , Body Patterning/genetics , Cell Differentiation , Chromatin/genetics , Chromatin/metabolism , Ectoderm/growth & development , Ectoderm/metabolism , Embryonic Development/genetics , Gene Expression Regulation, Developmental , HEK293 Cells , Histones/metabolism , Humans , Mesoderm/growth & development , Mutation , Neural Crest/cytology , Neural Crest/metabolism , Neural Plate/cytology , Neural Plate/growth & development , Neural Plate/metabolism , Nucleosomes/genetics , Skull/metabolism , Zebrafish/genetics , Zebrafish/growth & development
9.
Evol Dev ; 14(1): 104-15, 2012.
Article in English | MEDLINE | ID: mdl-23016978

ABSTRACT

Despite deep evolutionary roots in the metazoa, the gene regulatory network driving germ layer specification is surprisingly labile both between and within phyla. In Xenopus laevis, SoxB1- and SoxF-type transcription factors are intimately involved in germ-layer specification, in part through their regulation of Nodal signaling. However, it is unclear if X. laevis is representative of the ancestral vertebrate condition, as the precise roles of SoxF and SoxB1 in germ-layer specification vary among vertebrates, and there is no evidence that SoxF mediates germ-layer specification in any invertebrate. To better understand the evolution of germ-layer specification in the vertebrate lineage, we analyzed the expression of soxB1 and soxF genes in embryos and larvae of the basal vertebrate lamprey, and the basal chordate amphioxus. We find that both species maternally deposit soxB1 mRNA in the animal pole, soxF mRNA in the vegetal hemisphere, and zygotically express soxB1 and soxF throughout nascent ectoderm and mesendoderm, respectively. We also find that soxF is excluded from the vegetalmost blastomeres in lamprey and that, in contrast to vertebrates, amphioxus does not express soxF in the oral epithelium. In the context of recent work, our results suggest that a maternally established animal/vegetal Sox axis is a deeply conserved feature of chordate development that predates the role of Nodal in vertebrate germ-layer specification. Furthermore, exclusion of this axis from the vegetal pole in lamprey is consistent with the presence of an extraembryonic yolk mass, as has been previously proposed. Finally, conserved expression of SoxF in the forming mouth across the vertebrates, but not in amphioxus, lends support to the idea that the larval amphioxus mouth is nonhomologous to the vertebrate mouth.


Subject(s)
Body Patterning/genetics , Chordata, Nonvertebrate/embryology , Germ Layers/metabolism , Lampreys/embryology , RNA, Messenger, Stored/metabolism , SOXB1 Transcription Factors/genetics , SOXF Transcription Factors/genetics , Animals , Chordata, Nonvertebrate/genetics , Gene Expression Regulation, Developmental , Germ Layers/embryology , Lampreys/genetics , Larva/genetics , Larva/metabolism , SOXB1 Transcription Factors/metabolism , SOXF Transcription Factors/metabolism , Zygote/metabolism
10.
Development ; 139(4): 720-30, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22241841

ABSTRACT

Gene duplication has been proposed to drive the evolution of novel morphologies. After gene duplication, it is unclear whether changes in the resulting paralogs' coding-regions, or in their cis-regulatory elements, contribute most significantly to the assembly of novel gene regulatory networks. The Transcription Factor Activator Protein 2 (Tfap2) was duplicated in the chordate lineage and is essential for development of the neural crest, a tissue that emerged with vertebrates. Using a tfap2-depleted zebrafish background, we test the ability of available gnathostome, agnathan, cephalochordate and insect tfap2 paralogs to drive neural crest development. With the exception of tfap2d (lamprey and zebrafish), all are able to do so. Together with expression analyses, these results indicate that sub-functionalization has occurred among Tfap2 paralogs, but that neo-functionalization of the Tfap2 protein did not drive the emergence of the neural crest. We investigate whether acquisition of novel target genes for Tfap2 might have done so. We show that in neural crest cells Tfap2 directly activates expression of sox10, which encodes a transcription factor essential for neural crest development. The appearance of this regulatory interaction is likely to have coincided with that of the neural crest, because AP2 and SoxE are not co-expressed in amphioxus, and because neural crest enhancers are not detected proximal to amphioxus soxE. We find that sox10 has limited ability to restore the neural crest in Tfap2-deficient embryos. Together, these results show that mutations resulting in novel Tfap2-mediated regulation of sox10 and other targets contributed to the evolution of the neural crest.


Subject(s)
Activating Transcription Factor 2/metabolism , Biological Evolution , Neural Crest/physiology , SOXE Transcription Factors/metabolism , Activating Transcription Factor 2/genetics , Animals , Chordata/anatomy & histology , Chordata/classification , Chordata/embryology , Chordata/genetics , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Embryonic Induction , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Humans , Lampreys/anatomy & histology , Lampreys/embryology , Lampreys/genetics , Neural Crest/cytology , Phylogeny , Protein Isoforms/genetics , Protein Isoforms/metabolism , SOXE Transcription Factors/genetics , Zebrafish/anatomy & histology , Zebrafish/embryology , Zebrafish/genetics
11.
Dev Biol ; 359(2): 251-61, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21925157

ABSTRACT

Rbfox RNA binding proteins are implicated as regulators of phylogenetically-conserved alternative splicing events important for muscle function. To investigate the function of rbfox genes, we used morpholino-mediated knockdown of muscle-expressed rbfox1l and rbfox2 in zebrafish embryos. Single and double morphant embryos exhibited changes in splicing of overlapping sets of bioinformatically-predicted rbfox target exons, many of which exhibit a muscle-enriched splicing pattern that is conserved in vertebrates. Thus, conservation of intronic Rbfox binding motifs is a good predictor of Rbfox-regulated alternative splicing. Morphology and development of single morphant embryos were strikingly normal; however, muscle development in double morphants was severely disrupted. Defects in cardiac muscle were marked by reduced heart rate and in skeletal muscle by complete paralysis. The predominance of wavy myofibers and abnormal thick and thin filaments in skeletal muscle revealed that myofibril assembly is defective and disorganized in double morphants. Ultra-structural analysis revealed that although sarcomeres with electron dense M- and Z-bands are present in muscle fibers of rbfox1l/rbox2 morphants, they are substantially reduced in number and alignment. Importantly, splicing changes and morphological defects were rescued by expression of morpholino-resistant rbfox cDNA. Additionally, a target-blocking MO complementary to a single UGCAUG motif adjacent to an rbfox target exon of fxr1 inhibited inclusion in a similar manner to rbfox knockdown, providing evidence that Rbfox regulates the splicing of target exons via direct binding to intronic regulatory motifs. We conclude that Rbfox proteins regulate an alternative splicing program essential for vertebrate heart and skeletal muscle functions.


Subject(s)
Alternative Splicing , Heart/physiology , Muscle, Skeletal/physiology , RNA-Binding Proteins/physiology , Zebrafish Proteins/physiology , Zebrafish/physiology , Animals , Animals, Genetically Modified , Base Sequence , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/ultrastructure , Female , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/ultrastructure , Heart/embryology , Immunohistochemistry , In Situ Hybridization , Male , Microscopy, Confocal , Microscopy, Electron , Molecular Sequence Data , Muscle, Skeletal/embryology , Muscle, Skeletal/metabolism , Myocardium/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Splicing Factors , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
12.
Development ; 136(5): 749-60, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19158186

ABSTRACT

The zebrafish genes spadetail (spt) and no tail (ntl) encode T-box transcription factors that are important for early mesoderm development. Although much has been done to characterize these genes, the identity and location of target regulatory elements remain largely unknown. Here, we survey the genome for downstream target genes of the Spt and Ntl T-box transcription factors. We find evidence for extensive additive interactions towards gene activation and limited evidence for combinatorial and antagonistic interactions between the two factors. Using in vitro binding selection assays to define Spt- and Ntl-binding motifs, we searched for target regulatory sequence via a combination of binding motif searches and comparative genomics. We identified regulatory elements for tbx6 and deltaD, and, using chromatin immunoprecipitation, in vitro DNA binding assays and transgenic methods, we provide evidence that both are directly regulated by T-box transcription factors. We also find that deltaD is directly activated by T-box factors in the tail bud, where it has been implicated in starting the segmentation clock, suggesting that spt and ntl act upstream of this process.


Subject(s)
T-Box Domain Proteins/genetics , Zebrafish Proteins/genetics , Zebrafish/embryology , Zebrafish/genetics , Animals , Animals, Genetically Modified , Binding Sites/genetics , DNA/genetics , DNA/metabolism , Fetal Proteins , Gene Expression Regulation, Developmental , Mesoderm/embryology , Mesoderm/metabolism , Mice , Molecular Sequence Data , Mutation , Nerve Tissue Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Regulatory Elements, Transcriptional , Sequence Homology, Nucleic Acid , Signal Transduction , T-Box Domain Proteins/metabolism , Tail/embryology , Tail/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism , Zebrafish/metabolism , Zebrafish Proteins/metabolism
13.
Gene Expr Patterns ; 8(3): 171-80, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18068546

ABSTRACT

Using a spotted 65-mer oligonucleotide microarray, we have characterized the developmental expression profile from mid-gastrulation (75% epiboly) to 5 days post-fertilization (dpf) for >16,000 unique transcripts in the zebrafish genome. Microarray profiling data sets are often immense, and one challenge is validating the results and prioritizing genes for further study. The purpose of the current study was to address such issues, as well as to generate a publicly available resource for investigators to examine the developmental expression profile of any of the over 16,000 zebrafish genes on the array. On the chips, there are 16,459 printed spots corresponding to 16,288 unique transcripts and 172 beta-actin (AF025305) spots spatially distributed throughout the chip as a positive control. We have collected 55 microarray gene expression profiling results from various zebrafish laboratories and created a Perl/CGI-based software tool (http://serine.umdnj.edu/approximately ouyangmi/cgi-bin/zebrafish/profile.htm) for researchers to look for the expression patterns of their gene of interest. Users can search for their genes of interest by entering the accession numbers or the nucleotide sequences and the expression profiling will be reported in the form of expression intensities versus time-course graphical displays. In order to validate this web tool, we compared 74 genes' expression results between our web tool and the in situ hybridization results from Thisse et al. [Thisse, B., Heyer, V., Lux, A., Alunni, A., Degrave, A., Seiliez, I., Kirchner, J., Parkhill, J.-P., Thisse, C., 2004. Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. Meth. Cell. Biol. 77, 505-519] as well as those reported by Mathavan et al. [Mathavan, S., Lee, S.G., mark, A., Miller, L.D., Murthy, K.R., Tong, Y., Wu, Y.L., Lam, S.H., Yang, H., Ruan, Y., Korzh, V., Gong, Z., Liu, E.T., Lufkin, T., 2005. Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS Genet. 1, 260-276]. The comparison indicates that our microarray-derived expression patterns are 80% and 75% in agreement with the in situ database (Thisse et al., 2004) and previously published microarray data (Mathavan et al., 2005), respectively. Those genes that conflict between our web tool and the in situ database either have high sequence similarity with other genes or the in situ probes are not reliable. Among those genes that disagree between our web tool and those reported by Mathavan et al. (2005), 93% of the genes are in agreement between our web tool and the in situ database, indicating our web tool results are quite reliable. Thus, this resource provides a user-friendly web based platform for researchers to determine the developmental profile of their gene of interest and to prioritize genes identified in microarray analyses by their developmental expression profile.


Subject(s)
Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Developmental , Internet , RNA/genetics , Zebrafish/embryology , Animals , Oligonucleotide Array Sequence Analysis , RNA/physiology , Software , Zebrafish/genetics , Zebrafish/metabolism
14.
Bioinformatics ; 19 Suppl 1: i118-21, 2003.
Article in English | MEDLINE | ID: mdl-12855447

ABSTRACT

We have recently shown that a third of reliably-inferred alternative mRNA isoforms are candidates for nonsense-mediated mRNA decay (NMD), an mRNA surveillance system (Lewis et al., 2003; PROC: Natl Acad. Sci. USA, 100, 189-192). Rather than being translated to yield protein, these transcripts are expected to be degraded and may be subject to regulated unproductive splicing and translation (RUST). Our initial experimental studies are consistent with these predictions and suggest an unappreciated role for NMD in several human diseases.


Subject(s)
Alternative Splicing/genetics , Codon, Nonsense/genetics , Genetic Predisposition to Disease/genetics , Genetic Testing/methods , RNA Stability/genetics , RNA, Messenger/genetics , Transcription Factors/genetics , Alzheimer Disease/genetics , Gene Expression Regulation/genetics , Humans , Lymphoma/genetics , RNA Splice Sites/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...