Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Heart Assoc ; 9(16): e015690, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32805188

ABSTRACT

Background Mutations in the LMNA gene, encoding LMNA (lamin A/C), causes distinct disorders, including dilated cardiomyopathies, collectively referred to as laminopathies. The genes (coding and noncoding) and regulatory pathways controlled by LMNA in the heart are not completely defined. Methods and Results We analyzed cardiac transcriptome from wild-type, loss-of-function (Lmna-/-), and gain-of-function (Lmna-/- injected with adeno-associated virus serotype 9 expressing LMNA) mice with normal cardiac function. Deletion of Lmna (Lmna-/-) led to differential expression of 2193 coding and 629 long noncoding RNA genes in the heart (q<0.05). Re-expression of LMNA in the Lmna-/- mouse heart, completely rescued 501 coding and 208 non-coding and partially rescued 1862 coding and 607 lncRNA genes. Pathway analysis of differentially expressed genes predicted activation of transcriptional regulators lysine-specific demethylase 5A, lysine-specific demethylase 5B, tumor protein 53, and suppression of retinoblastoma 1, paired-like homeodomain 2, and melanocyte-inducing transcription factor, which were completely or partially rescued upon reexpression of LMNA. Furthermore, lysine-specific demethylase 5A and 5B protein levels were increased in the Lmna-/- hearts and were partially rescued upon LMNA reexpression. Analysis of biological function for rescued genes identified activation of tumor necrosis factor-α, epithelial to mesenchymal transition, and suppression of the oxidative phosphorylation pathway upon Lmna deletion and their restoration upon LMNA reintroduction in the heart. Restoration of the gene expression and transcriptional regulators in the heart was associated with improved cardiac function and increased survival of the Lmna-/- mice. Conclusions The findings identify LMNA-regulated cardiac genes and their upstream transcriptional regulators in the heart and implicate lysine-specific demethylase 5A and B as epigenetic regulators of a subset of the dysregulated genes in laminopathies.


Subject(s)
Gene Expression Regulation , Lamin Type A/physiology , Laminopathies/genetics , Myocardium/metabolism , RNA, Long Noncoding/metabolism , Regulatory Elements, Transcriptional , Animals , Epigenesis, Genetic , Lamin Type A/genetics , Lamin Type A/metabolism , Mice , Phenotype , RNA, Messenger
2.
Hum Gene Ther ; 29(8): 927-937, 2018 08.
Article in English | MEDLINE | ID: mdl-29641321

ABSTRACT

Adeno-associated virus serotype 9 (AAV9) is an efficient vector for gene transfer to the myocardium. However, the use of ubiquitous promoters, such as the cytomegalovirus (CMV) promoter, can result in expression of the transgene in organs other than the heart. This study tested if the efficiency and specificity of cardiac transcription from a chicken cardiac troponin T (TnT) promoter could be further increased by incorporating a cardiomyocyte-specific transcriptional cis-regulatory motif from human calsequestrin 2 (CS-CRM4) into the expression cassette (Enh.TnT). The efficiency of luciferase expression from the TnT and Enh.TnT constructs was compared to expression of luciferase under the control of the CMV promoter in both adult and neonatal mice. Overall, expression levels of luciferase in the heart were similar in mice injected with AAV9.TnT.Luc, AAV9.Enh.TnT.Luc and AAV9.CMV.Luc. In contrast, expression levels of luciferase activity in nontarget organs, including the liver and muscle, was lower in mice injected with the AAV9.TnT.Luc compared to AAV9.CMV.Luc and was negligible with AAV9.Enh.TnT. In neonates, in organs other than the heart, luciferase expression levels were too low to be quantified for all constructs. Taken together, the data show that the AAV9 Enh.TnT constructs drives high levels of expression of the transgene in the myocardium, with insignificant expression in other organs. These properties reduce the risks associated with the AAV9-mediated expression of the therapeutic protein of interest in nontarget organs. The excellent cardiac specificity should allow for the use of higher vector doses than are currently used, which might be essential to achieve the levels of transgene expression necessary for therapeutic benefits. Taken together, the findings suggest that the Enh.TnT transcription unit is a potentially attractive tool for clinical cardiac gene therapy in adults.


Subject(s)
Dependovirus/genetics , Genetic Therapy , Heart Diseases/therapy , Myocardium/metabolism , Transduction, Genetic , Animals , Animals, Newborn , Calsequestrin/genetics , Chickens/genetics , Gene Expression Regulation/genetics , Genetic Vectors/genetics , Genetic Vectors/therapeutic use , Heart Diseases/genetics , Humans , Mice , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/virology , Promoter Regions, Genetic/genetics , Troponin T/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...