Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-11691599

ABSTRACT

We examined myocardial 5'-adenosine monophosphate (5'-AMP) catabolism, adenosine salvage and adenosine responses in perfused guinea pig, rat and mouse heart. MVO(2) increased from 71+/-8 microl O(2)/min per g in guinea pig to 138+/-17 and 221+/-15 microl O(2)/min per g in rat and mouse. VO(2)/beat was 0.42+/-0.03, 0.50+/-0.03 and 0.55+/-0.04 microl O(2)/g in guinea pig, rat and mouse, respectively. Resting and peak coronary flows were highest in mouse vs. rat and guinea pig, and peak ventricular pressures and Ca(2+) sensitivity declined as heart mass increased. Net myocardial 5'-AMP dephosphorylation increased significantly as mass declined (3.8+/-0.5, 9.0+/-1.4 and 11.0+/-1.6 nmol/min per g in guinea pig, rat and mouse, respectively). Despite increased 5'-AMP catabolism, coronary venous [adenosine] was similar in guinea pig, rat and mouse (45+/-8, 69+/-10 and 57+/-14 nM, respectively). Comparable venous [adenosine] was achieved by increased salvage vs. deamination: 64%, 41% and 39% of adenosine formed was rephosphorylated while 23%, 46%, and 50% was deaminated in mouse, rat and guinea pig, respectively. Moreover, only 35-45% of inosine and its catabolites derive from 5'-AMP (vs. IMP) dephosphorylation in all species. Although post-ischemic purine loss was low in mouse (due to these adaptations), functional tolerance to ischemia decreased with heart mass. Cardiovascular sensitivity to adenosine also differed between species, with A(1) receptor sensitivity being greatest in mouse while A(2) sensitivity was greatest in guinea pig. In summary: (i) cardiac 5'-AMP dephosphorylation, VO(2), contractility and Ca(2+) sensitivity all increase as heart mass falls; (ii) adaptations in adenosine salvage vs. deamination limit purine loss and yield similar adenosine levels across species; (iii) ischemic tolerance declines with heart mass; and (iv) cardiovascular sensitivity to adenosine varies, with increasing A(2) sensitivity relative to A(1) sensitivity in larger hearts.


Subject(s)
Adenosine Monophosphate/metabolism , Adenosine/metabolism , Myocardium/metabolism , Animals , Bradycardia/metabolism , Calcium/metabolism , Dose-Response Relationship, Drug , Guinea Pigs , Hemoglobins/metabolism , Inosine/metabolism , Mice , Models, Biological , Myocardial Contraction , Perfusion , Phosphorylation , Rats , Species Specificity
2.
Clin Exp Pharmacol Physiol ; 28(1-2): 19-24, 2001.
Article in English | MEDLINE | ID: mdl-11153532

ABSTRACT

1. The effect of acute (50 micromol/L) and chronic (0.06% in drinking water for 14 days) caffeine on the response to ischaemia-reperfusion was studied in Wistar rat isolated perfused hearts. 2. Neither acute nor chronic caffeine modified normoxic heart rate or left ventricular pressures. However, acute caffeine decreased coronary flow by up to 20%, while chronic caffeine consumption increased coronary flow by approximately 15% and abolished the vasoconstrictor effect of acute caffeine (P<0.05). 3. After 15 min global ischaemia, chronic caffeine treatment did not alter the recovery of left ventricular diastolic pressure (LVDP), end-diastolic pressure (EDP) or heart rate during reperfusion, but did enhance coronary flow rate (P<0.05). Acute caffeine inhibited the recovery of LVDP and elevated postischaemic EDP in both caffeine-naive and chronic caffeine-treated groups. Acute caffeine also significantly inhibited coronary reflow in naive but not chronic caffeine-treated groups and produced a transient tachycardia during reperfusion in hearts from chronic caffeine-treated rats. 4. The incidence of arrhythmias was unaltered by chronic caffeine treatment, but was increased by acute caffeine in both naive and chronic caffeine hearts. 5. In conclusion, chronic caffeine intake alone has no detrimental effects on recovery from ischaemia; however, acute caffeine worsens postischaemic contractile function in hearts from naive and chronic caffeine-treated rats.


Subject(s)
Blood Pressure/drug effects , Caffeine/pharmacology , Central Nervous System Stimulants/pharmacology , Coronary Vessels/drug effects , Heart Rate/drug effects , Myocardial Ischemia/drug therapy , Animals , Arrhythmias, Cardiac/drug therapy , Blood Pressure/physiology , Caffeine/administration & dosage , Central Nervous System Stimulants/administration & dosage , Heart Rate/physiology , Male , Myocardial Reperfusion , Rats , Rats, Wistar , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...