Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 95: 129487, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37734423

ABSTRACT

The G2019S variant of LRRK2, which causes an increase in kinase activity, is associated with the occurrence of Parkinson's disease (PD). Potent, mutation-selective, and brain penetrant inhibitors of LRRK2 can suppress the biological effects specific to G2019S-LRRK2 that cause pathogenicity. We report the discovery of a series of cyanoindane and cyanotetralin kinase inhibitors culminating in compound 34 that demonstrated selective inhibition of phosphorylation of LRRK2 in the mouse brain. These novel inhibitors may further enable the precision medicine path for future PD therapeutics.

2.
J Med Chem ; 63(23): 14821-14839, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33197196

ABSTRACT

Pathogenic variants in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified that increase the risk for developing Parkinson's disease in a dominantly inherited fashion. These pathogenic variants, of which G2019S is the most common, cause abnormally high kinase activity, and compounds that inhibit this activity are being pursued as potentially disease-modifying therapeutics. Because LRRK2 regulates important cellular processes, developing inhibitors that can selectively target the pathogenic variant while sparing normal LRRK2 activity could offer potential advantages in heterozygous carriers. We conducted a high-throughput screen and identified a single selective compound that preferentially inhibited G2019S-LRRK2. Optimization of this scaffold led to a series of novel, potent, and highly selective G2019S-LRRK2 inhibitors.


Subject(s)
Indazoles/pharmacology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Tetrazoles/pharmacology , Animals , HEK293 Cells , High-Throughput Screening Assays , Humans , Indazoles/chemical synthesis , Indazoles/pharmacokinetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mice , Molecular Structure , Mutation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacokinetics , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Tetrazoles/chemical synthesis , Tetrazoles/pharmacokinetics
3.
ACS Med Chem Lett ; 7(11): 994-998, 2016 Nov 10.
Article in English | MEDLINE | ID: mdl-27882197

ABSTRACT

Expanded ligation techniques are sorely needed to generate unique linkages for the growing field of functionally enhanced proteins. To address this need, we present a unique chemical ligation that involves the double addition of a pyrazolone moiety with an aldehyde-labeled protein. This ligation occurs via a tandem Knoevenagel condensation-Michael addition. A pyrazolone reacts with an aldehyde to generate an enone, which undergoes subsequent attack by a second pyrazolone to generate a bis-pyrazolone species. This rapid and facile ligation technique is performed under mild conditions in the absence of catalyst to generate new architectures that were previously inaccessible via conventional ligation reactions. Using this unique ligation, we generated three site-specifically labeled antibody-drug conjugates (ADCs) with an average of four drugs to one antibody. The in vitro and in vivo efficacies along with pharmacokinetic data of the site-specific ADCs are reported.

4.
Chem Biol ; 22(2): 293-8, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25619935

ABSTRACT

There is a need for facile chemistries that allow for chemo- and regioselectivity in bioconjugation reactions. To address this need, we are pioneering site-specific bioconjugation methods that use formylglycine as a bioorthogonal handle on a protein surface. Here we introduce aldehyde-specific bioconjugation chemistry, the trapped-Knoevenagel ligation. The speed and stability of the trapped-Knoevenagel ligation further advances the repertoire of aldehyde-based bioconjugations and expands the toolbox for site-specific protein modifications. The trapped-Knoevenagel ligation reaction can be run at near neutral pH in the absence of catalysts to produce conjugates that are stable under physiological conditions. Using this new ligation, we generated an antibody-drug conjugate that demonstrates excellent efficacy in vitro and in vivo.


Subject(s)
Carbon/chemistry , Proteins/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Brentuximab Vedotin , Catalysis , Cell Line, Tumor , Cell Survival/drug effects , Humans , Hydrogen-Ion Concentration , Immunoconjugates/chemistry , Pyrazoles/chemistry , Trastuzumab/chemistry
5.
Eur J Med Chem ; 88: 3-9, 2014 Dec 17.
Article in English | MEDLINE | ID: mdl-25176286

ABSTRACT

In the context of antibody-drug conjugates (ADCs), noncleavable linkers provide a means to deliver cytotoxic small molecules to cell targets while reducing systemic toxicity caused by nontargeted release of the free drug. Additionally, noncleavable linkers afford an opportunity to change the chemical properties of the small molecule to improve potency or diminish affinity for multidrug transporters, thereby improving efficacy. We employed the aldehyde tag coupled with the hydrazino-iso-Pictet-Spengler (HIPS) ligation to generate a panel of site-specifically conjugated ADCs that varied only in the noncleavable linker portion. The ADC panel comprised antibodies carrying a maytansine payload ligated through one of five different linkers. Both the linker-maytansine constructs alone and the resulting ADC panel were characterized in a variety of in vitro and in vivo assays measuring biophysical and functional properties. We observed that slight differences in linker design affected these parameters in disparate ways, and noted that efficacy could be improved by selecting for particular attributes. These studies serve as a starting point for the exploration of more potent noncleavable linker systems.


Subject(s)
Antibodies/chemistry , Antineoplastic Agents/chemistry , Immunoconjugates/chemistry , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Immunoconjugates/pharmacology , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/pathology , Mice , Mice, SCID , Molecular Conformation
6.
Bioconjug Chem ; 25(7): 1331-41, 2014 Jul 16.
Article in English | MEDLINE | ID: mdl-24924618

ABSTRACT

It is becoming increasingly clear that site-specific conjugation offers significant advantages over conventional conjugation chemistries used to make antibody-drug conjugates (ADCs). Site-specific payload placement allows for control over both the drug-to-antibody ratio (DAR) and the conjugation site, both of which play an important role in governing the pharmacokinetics (PK), disposition, and efficacy of the ADC. In addition to the DAR and site of conjugation, linker composition also plays an important role in the properties of an ADC. We have previously reported a novel site-specific conjugation platform comprising linker payloads designed to selectively react with site-specifically engineered aldehyde tags on an antibody backbone. This chemistry results in a stable C-C bond between the antibody and the cytotoxin payload, providing a uniquely stable connection with respect to the other linker chemistries used to generate ADCs. The flexibility and versatility of the aldehyde tag conjugation platform has enabled us to undertake a systematic evaluation of the impact of conjugation site and linker composition on ADC properties. Here, we describe the production and characterization of a panel of ADCs bearing the aldehyde tag at different locations on an IgG1 backbone conjugated using Hydrazino-iso-Pictet-Spengler (HIPS) chemistry. We demonstrate that in a panel of ADCs with aldehyde tags at different locations, the site of conjugation has a dramatic impact on in vivo efficacy and pharmacokinetic behavior in rodents; this advantage translates to an improved safety profile in rats as compared to a conventional lysine conjugate.


Subject(s)
Aldehydes/chemistry , Antibodies, Monoclonal/chemistry , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cell Proliferation/drug effects , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Receptor, ErbB-2/immunology , Animals , Antibodies, Monoclonal/immunology , Breast Neoplasms/pathology , Female , Humans , Immunoconjugates/pharmacology , Mice , Mice, SCID , Molecular Structure , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Tissue Distribution , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
J Med Chem ; 56(13): 5261-74, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23713656

ABSTRACT

Herein, we describe our strategy to design metabolically stable γ-secretase inhibitors which are selective for inhibition of Aß generation over Notch. We highlight our synthetic strategy to incorporate diversity and chirality. Compounds 30 (ELND006) and 34 (ELND007) both entered human clinical trials. The in vitro and in vivo characteristics for these two compounds are described. A comparison of inhibition of Aß generation in vivo between 30, 34, Semagacestat 41, Begacestat 42, and Avagacestat 43 in mice is made. 30 lowered Aß in the CSF of healthy human volunteers.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Pyrazoles/pharmacology , Quinolines/pharmacology , Receptors, Notch/antagonists & inhibitors , Sulfonamides/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Animals , Area Under Curve , Basic Helix-Loop-Helix Transcription Factors/genetics , Dogs , Dose-Response Relationship, Drug , Drug Design , Drug Stability , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Gene Expression/drug effects , Heterocyclic Compounds, 3-Ring/chemistry , Homeodomain Proteins/genetics , Humans , Male , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Models, Chemical , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Quinolines/chemical synthesis , Quinolines/pharmacokinetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Notch/metabolism , Structure-Activity Relationship , Sulfonamides/chemistry , Time Factors , Transcription Factor HES-1
8.
Bioorg Med Chem Lett ; 23(7): 1967-73, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23454015

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) has been implicated in the pathogenesis of Parkinson's disease (PD). Inhibition of LRRK2 kinase activity is a therapeutic approach that may lead to new treatments for PD. Herein we report the discovery of a series of [1,2,4]triazolo[4,3-b]pyridazines that are potent against both wild-type and mutant LRRK2 kinase activity in biochemical assays and show an unprecedented selectivity towards the G2019S mutant. A structural rational for the observed selectivity is proposed.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridazines/pharmacology , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Pyridazines/chemical synthesis , Pyridazines/chemistry , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 23(7): 1974-7, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23453068

ABSTRACT

Mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with familial Parkinson's disease (PD). The kinase activity of this complex protein is increased by pathogenic mutations. Inhibition of LRRK2 kinase activity has therefore emerged as a promising approach for the treatment of PD. Herein we report our findings on a series of 4-alkylamino-7-aryl-3-cyanoquinolines that exhibit kinase inhibitory activity against both wild type and G2019S mutant LRRK2. Activity was determined in both biochemical and cellular assays. Compound 14 was further evaluated in an in vivo pharmacodynamic study and found to significantly inhibit Ser935 phosphorylation after oral dosing.


Subject(s)
Drug Discovery , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Quinolines/pharmacology , Animals , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mice , Mice, Knockout , Mice, Transgenic , Models, Molecular , Molecular Structure , Mutation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 23(1): 71-4, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23219325

ABSTRACT

Leucine rich repeat kinase 2 (LRRK2) has been implicated in the pathogenesis of Parkinson's disease (PD). Inhibition of LRRK2 kinase activity is a therapeutic approach that may lead to new treatments for PD. Herein we report the discovery of a series of cinnoline-3-carboxamides that are potent against both wild-type and mutant LRRK2 kinase activity in biochemical assays. These compounds are also shown to be potent inhibitors in a cellular assay and to have good to excellent CNS penetration.


Subject(s)
Heterocyclic Compounds, 2-Ring/chemistry , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Amides/chemical synthesis , Amides/chemistry , Amides/metabolism , Animals , Binding Sites , HEK293 Cells , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mice , Molecular Docking Simulation , Mutation , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Transfection
12.
Bioorg Med Chem Lett ; 21(19): 5791-4, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21885276

ABSTRACT

The structure-activity relationship (SAR) of a novel, potent and metabolically stable series of sulfonamide-pyrazoles that attenuate ß-amyloid peptide synthesis via γ-secretase inhibition is detailed herein. Sulfonamide-pyrazoles that are efficacious in reducing the cortical Aßx-40 levels in FVB mice via a single PO dose, as well as sulfonamide-pyrazoles that exhibit selectivity for inhibition of APP versus Notch processing by γ-secretase, are highlighted.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Protein Precursor/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/pharmacology , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Amyloid beta-Peptides/metabolism , Animals , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Heterocyclic Compounds, 3-Ring/chemistry , Inhibitory Concentration 50 , Mice , Mice, Inbred Strains , Structure-Activity Relationship , Sulfonamides/chemistry
13.
Alzheimers Res Ther ; 2(6): 36, 2010 Dec 29.
Article in English | MEDLINE | ID: mdl-21190552

ABSTRACT

INTRODUCTION: Inhibition of gamma-secretase presents a direct target for lowering Aß production in the brain as a therapy for Alzheimer's disease (AD). However, gamma-secretase is known to process multiple substrates in addition to amyloid precursor protein (APP), most notably Notch, which has limited clinical development of inhibitors targeting this enzyme. It has been postulated that APP substrate selective inhibitors of gamma-secretase would be preferable to non-selective inhibitors from a safety perspective for AD therapy. METHODS: In vitro assays monitoring inhibitor potencies at APP γ-site cleavage (equivalent to Aß40), and Notch ε-site cleavage, in conjunction with a single cell assay to simultaneously monitor selectivity for inhibition of Aß production vs. Notch signaling were developed to discover APP selective gamma-secretase inhibitors. In vivo efficacy for acute reduction of brain Aß was determined in the PDAPP transgene model of AD, as well as in wild-type FVB strain mice. In vivo selectivity was determined following seven days x twice per day (b.i.d.) treatment with 15 mg/kg/dose to 1,000 mg/kg/dose ELN475516, and monitoring brain Aß reduction vs. Notch signaling endpoints in periphery. RESULTS: The APP selective gamma-secretase inhibitors ELN318463 and ELN475516 reported here behave as classic gamma-secretase inhibitors, demonstrate 75- to 120-fold selectivity for inhibiting Aß production compared with Notch signaling in cells, and displace an active site directed inhibitor at very high concentrations only in the presence of substrate. ELN318463 demonstrated discordant efficacy for reduction of brain Aß in the PDAPP compared with wild-type FVB, not observed with ELN475516. Improved in vivo safety of ELN475516 was demonstrated in the 7d repeat dose study in wild-type mice, where a 33% reduction of brain Aß was observed in mice terminated three hours post last dose at the lowest dose of inhibitor tested. No overt in-life or post-mortem indications of systemic toxicity, nor RNA and histological end-points indicative of toxicity attributable to inhibition of Notch signaling were observed at any dose tested. CONCLUSIONS: The discordant in vivo activity of ELN318463 suggests that the potency of gamma-secretase inhibitors in AD transgenic mice should be corroborated in wild-type mice. The discovery of ELN475516 demonstrates that it is possible to develop APP selective gamma-secretase inhibitors with potential for treatment for AD.

16.
Bioorg Med Chem Lett ; 20(7): 2195-9, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20207136

ABSTRACT

Discovery of a series of pyrazolopiperidine sulfonamide based gamma-secretase inhibitors and its SAR evolution is described. Significant increases in APP potency on the pyrazolopiperidine scaffold over the original N-bicyclic sulfonamide scaffold were achieved and this potency increase translated in an improved in vivo efficacy.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Piperidines/chemistry , Piperidines/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Alzheimer Disease/drug therapy , Animals , Humans , Mice , Models, Molecular , Piperidines/therapeutic use , Structure-Activity Relationship , Sulfonamides/therapeutic use
19.
J Med Chem ; 50(21): 5161-7, 2007 Oct 18.
Article in English | MEDLINE | ID: mdl-17880055

ABSTRACT

The B1 receptor is an attractive target for the treatment of pain and inflammation. A series of 3-carboxamido-5-phenacylamino pyrazole B1 receptor antagonists are described that exhibit good potency against B1 and high selectivity over B2. Initially, N-unsubstituted pyrazoles were studied, but these compounds suffered from extensive glucuronidation in primates. This difficulty could be surmounted by the use of N-substituted pyrazoles. Optimization efforts culminated in compound 41, which has high receptor potency and metabolic stability.


Subject(s)
Benzamides/chemical synthesis , Bradykinin B1 Receptor Antagonists , Pyrazoles/chemical synthesis , Benzamides/chemistry , Benzamides/pharmacology , Crystallography, X-Ray , Fibroblasts/metabolism , Humans , In Vitro Techniques , Lung/cytology , Molecular Structure , Pyrazoles/chemistry , Pyrazoles/pharmacology , Radioligand Assay , Structure-Activity Relationship
20.
J Pharmacol Exp Ther ; 322(2): 619-30, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17470643

ABSTRACT

The bradykinin B(1) receptor plays a critical role in chronic pain and inflammation, although efforts to demonstrate efficacy of receptor antagonists have been hampered by species-dependent potency differences, metabolic instability, and low oral exposure of current agents. The pharmacology, pharmacokinetics, and analgesic efficacy of the novel benzamide B(1) receptor antagonist 7-chloro-2-[3-(9-pyridin-4-yl-3,9-diazaspiro[5.5]undecanecarbonyl)phenyl]-2,3-dihydro-isoindol-1-one (ELN441958) is described. ELN441958 competitively inhibited the binding of the B(1) agonist ligand [(3)H]desArg(10)-kallidin ([(3)H]DAKD) to IMR-90 human fibroblast membranes with high affinity (K(i) = 0.26 +/- 0.02 nM). ELN441958 potently antagonized DAKD (but not bradykinin)-induced calcium mobilization in IMR-90 cells, indicating that it is highly selective for B(1) over B(2) receptors. Antagonism of agonist-induced calcium responses at B(1) receptors from different species indicated that ELN441958 is selective for primate over rodent B(1) receptors with a rank order potency (K(B), nanomolar) of human (0.12 +/- 0.02) approximately rhesus monkey (0.24 +/- 0.01) > rat (1.5 +/- 0.4) > mouse (14 +/- 4). ELN441958 had good permeability and metabolic stability in vitro consistent with high oral exposure and moderate plasma half-lives in rats and rhesus monkeys. Because ELN441958 is up to 120-fold more potent at primate than at rodent B(1) receptors, it was evaluated in a primate pain model. ELN441958 dose-dependently reduced carrageenan-induced thermal hyperalgesia in a rhesus monkey tail-withdrawal model, with an ED(50) approximately 3 mg/kg s.c. Naltrexone had no effect on the antihyperalgesia produced by ELN441958, indicating a lack of involvement of opioid receptors. ELN441958 is a novel small molecule bradykinin B(1) receptor antagonist exhibiting high oral bioavailability and potent systemic efficacy in rhesus monkey inflammatory pain.


Subject(s)
Analgesics/pharmacology , Bradykinin B1 Receptor Antagonists , Spiro Compounds/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Analgesics/chemistry , Analgesics/pharmacokinetics , Animals , Bradykinin/analogs & derivatives , Bradykinin/pharmacology , Calcium/metabolism , Carrageenan/toxicity , Cell Line , Cell Membrane Permeability , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Kallidin/analogs & derivatives , Kallidin/metabolism , Kallidin/pharmacology , Macaca mulatta , Mice , Mice, Knockout , Microsomes, Liver/metabolism , Molecular Structure , Naltrexone/pharmacology , Naproxen/pharmacology , Naproxen/therapeutic use , Narcotic Antagonists , Rats , Receptor, Bradykinin B1/genetics , Receptor, Bradykinin B1/metabolism , Species Specificity , Spiro Compounds/chemistry , Spiro Compounds/pharmacokinetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...