Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8: 15867, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28681844

ABSTRACT

Paleo-climate records and geodynamic modelling indicate the existence of complex interactions between glacial sea level changes, volcanic degassing and atmospheric CO2, which may have modulated the climate system's descent into the last ice age. Between ∼85 and 70 kyr ago, during an interval of decreasing axial tilt, the orbital component in global temperature records gradually declined, while atmospheric CO2, instead of continuing its long-term correlation with Antarctic temperature, remained relatively stable. Here, based on novel global geodynamic models and the joint interpretation of paleo-proxy data as well as biogeochemical simulations, we show that a sea level fall in this interval caused enhanced pressure-release melting in the uppermost mantle, which may have induced a surge in magma and CO2 fluxes from mid-ocean ridges and oceanic hotspot volcanoes. Our results reveal a hitherto unrecognized negative feedback between glaciation and atmospheric CO2 predominantly controlled by marine volcanism on multi-millennial timescales of ∼5,000-15,000 years.

2.
Environ Sci Pollut Res Int ; 13(6): 406-13, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17120831

ABSTRACT

BACKGROUND: Halogenated compounds in the atmosphere are of great environmental concern due to their demonstrated negative effect on atmospheric chemistry and climate. Detailed knowledge of the emission budgets of halogenated compounds has to be gained to understand better their specific impact on ozone chemistry and the climate. Such data are also highly relevant to guide policy decisions in connexion with international agreements about protection of the ozone layer. In selected cases, the relevance of specific emission sources for certain compounds were unclear. In this study we present new and comprehensive evidence regarding the existence and relevance of a volcanic contribution of chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), hydrochlorofluorocarbons (HCFCs), halons (bromine containing halo(hydro)carbons), and fully fluorinated compounds (e.g. CF4 and SF6) to the atmospheric budget. METHODS: In order to obtain new evidence of a volcanic origin of these compounds, we collected repeatedly, during four field campaigns covering a period of two years, gases from fumaroles discharging over a wide range of temperatures at the Nicaraguan subduction zone volcanoes Momotombo, Cerro Negro and Mombacho, and analysed them with very sensitive GC/MS systems. RESULTS AND DISCUSSION: In most fumarolic samples certain CFCs, HFCs, HCFCs, halons, and the fully fluorinated compounds CF4 and SF6 were present above detection limits. However, these compounds occur in the fumarole gases in relative proportions characteristic for ambient air. CONCLUSION: This atmospheric fingerprint can be explained by variable amounts of air entering the porous volcanic edifices and successively being incorporated into the fumarolic gas discharges. Recommendation and Outlook. Our results suggest that the investigated volcanoes do not constitute a significant natural source for CFCs, HFCs, HCFCs, halons, CF4, SF6 and NF3.


Subject(s)
Air Pollutants/chemistry , Atmosphere/chemistry , Hydrocarbons, Halogenated/chemistry , Volcanic Eruptions , Air Pollutants/analysis , Atmosphere/analysis , Environmental Monitoring , Gas Chromatography-Mass Spectrometry , Hydrocarbons, Halogenated/analysis , Nicaragua , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...