Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Clin Cancer Res ; 41(1): 34, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35073946

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) is characterized by accumulation of aberrantly differentiated hematopoietic myeloid progenitor cells. The karyotyping-silent NUP98-NSD1 fusion is a molecular hallmark of pediatric AML and is associated with the activating FLT3-ITD mutation in > 70% of the cases. NUP98-NSD1 fusion protein promotes myeloid progenitor self-renewal in mice via unknown molecular mechanism requiring both the NUP98 and the NSD1 moieties. METHODS: We used affinity purification coupled to label-free mass spectrometry (AP-MS) to examine the effect of NUP98-NSD1 structural domain deletions on nuclear interactome binding. We determined their functional relevance in NUP98-NSD1 immortalized primary murine hematopoietic stem and progenitor cells (HSPC) by inducible knockdown, pharmacological targeting, methylcellulose assay, RT-qPCR analysis and/or proximity ligation assays (PLA). Fluorescence recovery after photobleaching and b-isoxazole assay were performed to examine the phase transition capacity of NUP98-NSD1 in vitro and in vivo. RESULTS: We show that NUP98-NSD1 core interactome binding is largely dependent on the NUP98 phenylalanine-glycine (FG) repeat domains which mediate formation of liquid-like phase-separated NUP98-NSD1 nuclear condensates. We identified condensate constituents including imitation switch (ISWI) family member SMARCA5 and BPTF (bromodomain PHD finger transcription factor), both members of the nucleosome remodeling factor complex (NURF). We validated the interaction with SMARCA5 in NUP98-NSD1+ patient cells and demonstrated its functional role in NUP98-NSD1/FLT3-ITD immortalized primary murine hematopoietic cells by genetic and pharmacological targeting. Notably, SMARCA5 inhibition did not affect NUP98-NSD1 condensates suggesting that functional activity rather than condensate formation per se is crucial to maintain the transformed phenotype. CONCLUSIONS: NUP98-NSD1 interacts and colocalizes on the genome with SMARCA5 which is an essential mediator of the NUP98-NSD1 transformation in hematopoietic cells. Formation of NUP98-NSD1 phase-separated nuclear condensates is not sufficient for the maintenance of transformed phenotype, which suggests that selective targeting of condensate constituents might represent a new therapeutic strategy for NUP98-NSD1 driven AML.


Subject(s)
Adenosine Triphosphatases/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Hematopoiesis/genetics , Nuclear Pore Complex Proteins/metabolism , Proteomics/methods , Animals , Humans , Mice
2.
J Cell Biol ; 206(2): 307-28, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-25049275

ABSTRACT

The mechanisms by which tumor cells metastasize and the role of endocytic proteins in this process are not well understood. We report that overexpression of the GTPase RAB5A, a master regulator of endocytosis, is predictive of aggressive behavior and metastatic ability in human breast cancers. RAB5A is necessary and sufficient to promote local invasion and distant dissemination of various mammary and nonmammary tumor cell lines, and this prometastatic behavior is associated with increased intratumoral cell motility. Specifically, RAB5A is necessary for the formation of invadosomes, membrane protrusions specialized in extracellular matrix (ECM) degradation. RAB5A promotes RAB4- and RABENOSYN-5-dependent endo/exocytic cycles (EECs) of critical cargos (membrane-type 1 matrix metalloprotease [MT1-MMP] and ß3 integrin) required for invadosome formation in response to motogenic stimuli. This trafficking circuitry is necessary for spatially localized hepatocyte growth factor (HGF)/MET signaling that drives invasive, proteolysis-dependent chemotaxis in vitro and for conversion of ductal carcinoma in situ to invasive ductal carcinoma in vivo. Thus, RAB5A/RAB4 EECs promote tumor dissemination by controlling a proteolytic, mesenchymal invasive program.


Subject(s)
Breast Neoplasms/genetics , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/physiology , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Progression , Extracellular Matrix/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Invasiveness/genetics , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Proteolysis , Transplantation, Heterologous , rab5 GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...