Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 21064, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36473926

ABSTRACT

Understanding the factors and processes that shape intra-specific sensitivity to heat stress is fundamental to better predicting the vulnerability of benthic species to climate change. Here, we investigate the response of a habitat-forming Mediterranean octocoral, the red gorgonian Paramuricea clavata (Risso, 1826) to thermal stress at multiple biological and geographical scales. Samples from eleven P. clavata populations inhabiting four localities separated by hundreds to more than 1500 km of coast and with contrasting thermal histories were exposed to a critical temperature threshold (25 °C) in a common garden experiment in aquaria. Ten of the 11 populations lacked thermotolerance to the experimental conditions provided (25 days at 25 °C), with 100% or almost 100% colony mortality by the end of the experiment. Furthermore, we found no significant association between local average thermal regimes nor recent thermal history (i.e., local water temperatures in the 3 months prior to the experiment) and population thermotolerance. Overall, our results suggest that local adaptation and/or acclimation to warmer conditions have a limited role in the response of P. clavata to thermal stress. The study also confirms the sensitivity of this species to warm temperatures across its distributional range and questions its adaptive capacity under ocean warming conditions. However, important inter-individual variation in thermotolerance was found within populations, particularly those exposed to the most severe prior marine heatwaves. These observations suggest that P. clavata could harbor adaptive potential to future warming acting on standing genetic variation (i.e., divergent selection) and/or environmentally-induced phenotypic variation (i.e., intra- and/or intergenerational plasticity).


Subject(s)
Heat-Shock Response
2.
Proc Biol Sci ; 288(1965): 20212384, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34933599

ABSTRACT

Understanding the resilience of temperate reefs to climate change requires exploring the recovery capacity of their habitat-forming species from recurrent marine heatwaves (MHWs). Here, we show that, in a Mediterranean highly enforced marine protected area established more than 40 years ago, habitat-forming octocoral populations that were first affected by a severe MHW in 2003 have not recovered after 15 years. Contrarily, they have followed collapse trajectories that have brought them to the brink of local ecological extinction. Since 2003, impacted populations of the red gorgonian Paramuricea clavata (Risso, 1826) and the red coral Corallium rubrum (Linnaeus, 1758) have followed different trends in terms of size structure, but a similar progressive reduction in density and biomass. Concurrently, recurrent MHWs were observed in the area during the 2003-2018 study period, which may have hindered populations recovery. The studied octocorals play a unique habitat-forming role in the coralligenous assemblages (i.e. reefs endemic to the Mediterranean Sea home to approximately 10% of its species). Therefore, our results underpin the great risk that recurrent MHWs pose for the long-term integrity and functioning of these emblematic temperate reefs.


Subject(s)
Anthozoa , Ecosystem , Animals , Climate Change , Coral Reefs , Longitudinal Studies , Mediterranean Sea
3.
Mar Pollut Bull ; 173(Pt B): 113099, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34798431

ABSTRACT

Understanding the interactions between various stressors, and the resulting cumulative impacts they exert, is essential in order to predict the potential resilience of marine habitats to climate change. Crustose coralline algae (CCA) are a major calcifying component of marine habitats, from tropical to polar oceans, and play a central role as ecosystem engineers in many rocky reefs. These species are increasingly threatened by the stress of climate change. However, the effects of other stressors linked to global change, such as invasive species, have scarcely been addressed. We have studied the interactive effects of invasive algae and global warming on CCA, combining observational and experimental approaches. CCA sensitivity to invasive algae is heightened when they are concurrently exposed to elevated seawater temperature, and the interaction between these two stressors triggers drastic synergistic effects on CCA. The reduction and eventual disappearance of these "ecosystem foundation species" may undermine ecological functioning, leading to the disappearance and/or fragmentation of the communities associated with them.


Subject(s)
Coral Reefs , Ecosystem , Hydrogen-Ion Concentration , Oceans and Seas , Seawater
4.
Proc Biol Sci ; 285(1873)2018 02 28.
Article in English | MEDLINE | ID: mdl-29491172

ABSTRACT

Understanding the role of the environment in shaping the evolution of life histories remains a major challenge in ecology and evolution. We synthesize longevity patterns of marine sessile species and find strong positive relationships between depth and maximum lifespan across multiple sessile marine taxa, including corals, bivalves, sponges and macroalgae. Using long-term demographic data on marine sessile and terrestrial plant species, we show that extreme longevity leads to strongly dampened population dynamics. We also used detailed analyses of Mediterranean red coral, with a maximum lifespan of 532 years, to explore the life-history patterns of long-lived taxa and the vulnerability to external mortality sources that these characteristics can create. Depth-related environmental gradients-including light, food availability, temperature and disturbance intensity-drive highly predictable distributions of life histories that, in turn, have predictable ecological consequences for the dynamics of natural populations.


Subject(s)
Anthozoa/physiology , Aquatic Organisms/physiology , Bivalvia/physiology , Ecosystem , Longevity , Seaweed/physiology , Animals , Population Dynamics
5.
Sci Rep ; 7(1): 5069, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28698582

ABSTRACT

The differential response of marine populations to climate change remains poorly understood. Here, we combine common garden thermotolerance experiments in aquaria and population genetics to disentangle the factors driving the population response to thermal stress in a temperate habitat-forming species: the octocoral Paramuricea clavata. Using eight populations separated from tens of meters to hundreds of kilometers, which were differentially impacted by recent mortality events, we identify 25 °C as a critical thermal threshold. After one week of exposure at this temperature, seven of the eight populations were affected by tissue necrosis and after 30 days of exposure at this temperature, the mean % of affected colonies increased gradually from 3 to 97%. We then demonstrate the weak relation between the observed differential phenotypic responses and the local temperature regimes experienced by each population. A significant correlation was observed between these responses and the extent of genetic drift impacting each population. Local adaptation may thus be hindered by genetic drift, which seems to be the main driver of the differential response. Accordingly, conservation measures should promote connectivity and control density erosion in order to limit the impact of genetic drift on marine populations facing climate change.


Subject(s)
Anthozoa/physiology , Climate Change , Ecosystem , Adaptation, Physiological , Animals , Geography , Species Specificity , Stress, Physiological , Temperature
6.
Sci Rep ; 7: 42404, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28198382

ABSTRACT

Overexploitation leads to the ecological extinction of many oceanic species. The depletion of historical abundances of large animals, such as whales and sea turtles, is well known. However, the magnitude of the historical overfishing of exploited invertebrates is unclear. The lack of rigorous baseline data limits the implementation of efficient management and conservation plans in the marine realm. The precious Mediterranean red coral Corallium rubrum has been intensively exploited since antiquity for its use in jewellery. It shows dramatic signs of overexploitation, with no untouched populations known in shallow waters. Here, we report the discovery of an exceptional red coral population from a previously unexplored shallow underwater cave in Corsica (France) harbouring the largest biomass (by more than 100-fold) reported to date in the Mediterranean. Our findings challenge current assumptions on the pristine state of this emblematic species. Our results suggest that, before intense exploitation, red coral lived in relatively high-density populations with a large proportion of centuries-old colonies, even at very shallow depths. We call for the re-evaluation of the baseline for red coral and question the sustainability of the exploitation of a species that is still common but ecologically (functionally) extinct and in a trajectory of further decline.


Subject(s)
Anthozoa , Ecosystem , Animals , Biomass , Conservation of Natural Resources , Mediterranean Sea , Population Density
7.
Proc Biol Sci ; 282(1818): 20150587, 2015 11 07.
Article in English | MEDLINE | ID: mdl-26511045

ABSTRACT

Ocean acidification is receiving increasing attention because of its potential to affect marine ecosystems. Rare CO2 vents offer a unique opportunity to investigate the response of benthic ecosystems to acidification. However, the benthic habitats investigated so far are mainly found at very shallow water (less than or equal to 5 m depth) and therefore are not representative of the broad range of continental shelf habitats. Here, we show that a decrease from pH 8.1 to 7.9 observed in a CO2 vent system at 40 m depth leads to a dramatic shift in highly diverse and structurally complex habitats. Forests of the kelp Laminaria rodriguezii usually found at larger depths (greater than 65 m) replace the otherwise dominant habitats (i.e. coralligenous outcrops and rhodolith beds), which are mainly characterized by calcifying organisms. Only the aragonite-calcifying algae are able to survive in acidified waters, while high-magnesium-calcite organisms are almost completely absent. Although a long-term survey of the venting area would be necessary to fully understand the effects of the variability of pH and other carbonate parameters over the structure and functioning of the investigated mesophotic habitats, our results suggest that in addition of significant changes at species level, moderate ocean acidification may entail major shifts in the distribution and dominance of key benthic ecosystems at regional scale, which could have broad ecological and socio-economic implications.


Subject(s)
Carbon Dioxide/pharmacology , Ecosystem , Seawater/chemistry , Acids/chemistry , Animals , Anthozoa/physiology , Bryozoa/physiology , Carbonates/chemistry , Hydrogen-Ion Concentration , Laminaria/physiology , Mediterranean Sea , Rhodophyta/physiology
8.
Mol Ecol ; 20(16): 3291-305, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21762434

ABSTRACT

Defining the scale of connectivity among marine populations and identifying the barriers to gene flow are tasks of fundamental importance for understanding the genetic structure of populations and for the design of marine reserves. Here, we investigated the population genetic structure at three spatial scales of the red gorgonian Paramuricea clavata (Cnidaria, Octocorallia), a key species dwelling in the coralligenous assemblages of the Mediterranean Sea. Colonies of P. clavata were collected from 39 locations across the Mediterranean Sea from Morocco to Turkey and analysed using microsatellite loci. Within three regions (Medes, Marseille and North Corsica), sampling was obtained from multiple locations and at different depths. Three different approaches (measures of genetic differentiation, Bayesian clustering and spatially explicit maximum-difference algorithm) were used to determine the pattern of genetic structure. We identified genetic breaks in the spatial distribution of genetic diversity, which were concordant with oceanographic conditions in the Mediterranean Sea. We revealed a high level of genetic differentiation among populations and a pattern of isolation by distance across the studied area and within the three regions, underlining short effective larval dispersal in this species. We observed genetic differentiation among populations in the same locality dwelling at different depths, which may be explained by local oceanographic conditions and which may allow a process of local adaptation of the populations to their environment. We discuss the implications of our results for the conservation of the species, which is exposed to various threats.


Subject(s)
Cnidaria/genetics , Genetic Variation , Animals , Aquatic Organisms/genetics , Bayes Theorem , Biodiversity , Conservation of Natural Resources , Demography , France , Gene Flow , Larva , Mediterranean Sea , Microsatellite Repeats , Morocco , Population/genetics , Turkey
9.
Mol Ecol ; 19(19): 4204-16, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20854271

ABSTRACT

Identifying microevolutionary processes acting in populations of marine species with larval dispersal is a challenging but crucial task because of its conservation implications. In this context, recent improvements in the study of spatial genetic structure (SGS) are particularly promising because they allow accurate insights into the demographic and evolutionary processes at stake. Using an exhaustive sampling and a combination of image processing and population genetics, we highlighted significant SGS between colonies of Corallium rubrum over an area of half a square metre, which sheds light on a number of aspects of its population biology. Based on this SGS, we found the mean dispersal range within sites to be between 22.6 and 32.1 cm, suggesting that the surveyed area approximately corresponded to a breeding unit. We then conducted a kinship analysis, which revealed a complex half-sib family structure and allowed us to quantify the level of self-recruitment and to characterize aspects of the mating system of this species. Furthermore, significant temporal variations in allele frequencies were observed, suggesting low genetic drift. These results have important conservation implications for the red coral and further our understanding of the microevolutionary processes acting within populations of sessile marine species with a larval phase.


Subject(s)
Anthozoa/genetics , Genetic Variation , Genetics, Population , Animals , Gene Frequency , Genetic Drift , Genotype , Microsatellite Repeats , Spatial Analysis
10.
Mol Ecol ; 19(4): 675-90, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20074314

ABSTRACT

Combined action from over-harvesting and recent mass mortality events potentially linked to ongoing climate changes has led to new concerns for the conservation of shallow populations (5-60 m) of Corallium rubrum, an octocorallian that is mainly found in the Mediterranean Sea. The present study was designed to analyse population structure and relationships at different spatial scales (from 10s of meters to 100s of kilometres) with a focus on dispersal pattern. We also performed the first analysis of the distribution of genetic diversity using a comparative approach between regional-clusters and samples. Forty populations dwelling in four distinct regions between 14 and 60 m in depth were genotyped using 10 microsatellites. Our main results indicate (i) a generalized pair-sample differentiation combined with a weak structure between regional-clusters; (ii) the occurrence of isolation by distance at the global scale, but also within two of the three analysed regional-clusters; (iii) a high level of genetic diversity over the surveyed area with a heterogeneous distribution from regional-cluster to sample levels. The evolutionary consequences of these results are discussed and their management implications are provided.


Subject(s)
Anthozoa/genetics , Evolution, Molecular , Genetic Variation , Genetics, Population , Animals , Cell Nucleus/genetics , Cluster Analysis , Conservation of Natural Resources , Genotype , Geography , Mediterranean Sea , Microsatellite Repeats , Sequence Analysis, DNA
11.
C R Acad Sci III ; 323(10): 853-65, 2000 Oct.
Article in French | MEDLINE | ID: mdl-11098401

ABSTRACT

An unprecedented mass mortality event has been observed at the end of the summer 1999 along the coasts of Provence (France) and Ligury (Italy). This event has severely affected a wide array of sessile filter-feeder invertebrates from hard-substratum communities, such as sponges (particularly the keratose sponges Hippospongia and Spongia), cnidarians (particularly the anthozoans Corallium, Paramuricea, Eunicella and Cladocora), bivalves, ascidians and bryozoans. Along the Provence coasts, the outbreak spread from east to west. Exceptionally high and constant temperatures of the whole water column (23-24 degrees C, for over one month, down to 40 m) could have determined an environmental context favourable to the mass mortality event. Like the thermal anomaly, the mortality is limited in depth. However, we cannot ascertain whether temperature had a direct effect on organisms or acted in synergy with a latent and/or waterborne agent (microbiological or chemical). Taking into account the global warming context in the NW-Mediterranean, monitoring programs of physical-chemical parameters and vulnerable populations should rapidly be set up.


Subject(s)
Environment , Invertebrates/physiology , Animals , Bryozoa/physiology , Cnidaria/physiology , France , Greenhouse Effect , Italy , Mediterranean Sea , Mollusca/physiology , Mortality , Porifera/physiology , Urochordata/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...