Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Plants ; 9(11): 1810-1817, 2023 11.
Article in English | MEDLINE | ID: mdl-37845335

ABSTRACT

Large-scale, abrupt ecosystem change in direct response to climate extremes is a critical but poorly documented phenomenon1. Yet, recent increases in climate-induced tree mortality raise concern that some forest ecosystems are on the brink of collapse across wide environmental gradients2,3. Here we assessed climatic and productivity trends across the world's five Mediterranean forest ecosystems from 2000 to 2021 and detected a large-scale, abrupt forest browning and productivity decline in Chile (>90% of the forest in <100 days), responding to a sustained, acute drought. The extreme dry and warm conditions in Chile, unprecedented in the recent history of all Mediterranean-type ecosystems, are akin to those projected to arise in the second half of the century4. Long-term recovery of this forest is uncertain given an ongoing decline in regional water balance. This dramatic plummet of forest productivity may be a spyglass to the future for other Mediterranean ecosystems.


Subject(s)
Climate Change , Ecosystem , Forests , Trees/physiology , Droughts
2.
J Environ Manage ; 344: 118726, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37573693

ABSTRACT

Quantifying drought's economic impacts has been key for decision-making to build future strategies and improve the development and implementation of proactive plans. However, climate change is changing drought frequency, intensity, and durability. These changes imply modifications of their economic impact, as longer droughts result in greater cumulative economic losses for water users. Though the longer the drought lasts, other factors also play a crucial role in its economic outcomes, such as Infrastructure capacity (IC), the Amount of Water in Storage (AWS) in reservoirs and aquifers, and short- and long-term responses to it. This study proposes and applies an analytical framework for the economic assessment of long-run droughts, assessing and explaining central Chile megadrought economic effects through the factors that begin to influence the economic impact level in this setting. High levels of both IC and the AWS, as well as short- and long-term responses of water users, allow for high resilience to long-run droughts, tolerating extraordinary water disruption in its society with relatively low total economic impacts. Despite this adaptability, long-term droughts bring places to a water-critical threshold where long-term adaptation strategies may be less flexible than short-term strategies, escalating the adverse economic effects. This fact suggests that the economic evaluation of megadrought needs to focus on future tipping points (substantial water scarcity). The tipping point depends on the IC, how water users manage the AWS, and adaptation strategies. Establishing the tipping point should be a priority for future interdisciplinary research.


Subject(s)
Droughts , Water Supply , Water , Chile , Climate Change
3.
Mar Pollut Bull ; 193: 115214, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37385183

ABSTRACT

Phytoplankton succession is related to hydroclimatic conditions. In this study we provide the first description of a toxic phytoplankton succession in the Patagonian Fjord System. The shift was modulated by atmospheric-oceanographic forcing and consisted of the replacement of the marine dinoflagellate Dinophysis acuta in a highly stratified water column during austral summer by the diatom Pseudo-nitzschia calliantha in a mixed water column during late summer and early autumn. This transition, accompanied by a change in the biotoxin profiles (from lipophilic dinophysis toxins to hydrophilic domoic acid), was induced by the arrival of an intense atmospheric river. The winds in Magdalena Sound may have been further amplified, due to its west-east orientation and its location within a tall, narrow mountain canyon. This work also documents the first known appearance of toxic P. calliantha in Northern Patagonian. The potential impacts of the biotoxins of this species on higher trophic levels are discussed.


Subject(s)
Diatoms , Dinoflagellida , Phytoplankton , Marine Toxins , Rivers , Water
4.
Environ Pollut ; 330: 121759, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37146872

ABSTRACT

This research provides new evidence regarding the different kinds of air quality episodes, and their underlying mechanisms, that frequently impact the urban area of Quintero Bay in Central Chile, which is located along complex coastal terrain and is surrounded by industries. The monitoring campaign was carried out in January 2022 and encompassed two distinctive meteorological regimes. The first part of the month was dominated by a coastal low centered to the south of Quintero, which resulted in prevailing northerly flow (or weak southerlies) and a deep cloud-topped marine boundary layer. After a 2-3-day transition, the latter collapsed, and a clear-sky regime ensued, which was characterized by a shallow boundary layer and strong southerly winds during the daytime that lasted until the end of the campaign. By using proton transfer reaction time of flight mass spectrometry (PTR-TOF-MS) at a high temporal resolution (1 s), we measured high levels of volatile organic compounds (VOCs) during air quality episodes in real time. The episodes detected were associated with different prevailing meteorological regimes, suggesting that different point sources were involved. In the first episode, propene/cyclopropane, butenes, benzene, toluene and ethylbenzene/xylenes were associated with north and northwesterly weak winds. Complaints associated with hydrocarbon odor were reported. The pollution originated from industrial and petrochemical units located to the north of Quintero, which transport and store natural gas, liquified petroleum gas and oil. The second episode was linked to an oil refinery located south of our measurement site. In this case, high levels of phenol, furan and cresols occurred under strong southwesterly winds. During this event, headaches and dizziness were reported. By contrast, the levels of other aromatic compounds (benzene, toluene, ethylbenzene/xylenes) were lower than in the first air pollution episode.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Air Pollutants/analysis , Volatile Organic Compounds/analysis , Environmental Monitoring/methods , Protons , Benzene/analysis , Xylenes/analysis , Bays , Chile , Mass Spectrometry , Toluene/analysis
5.
Sci Total Environ ; 865: 161288, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36587668

ABSTRACT

Harmful algal blooms (HABs) in southern Chile are a serious threat to public health, tourism, artisanal fisheries, and aquaculture in this region. Ichthyotoxic HAB species have recently become a major annual threat to the Chilean salmon farming industry, due to their severe economic impacts. In early austral autumn 2021, an intense bloom of the raphidophyte Heterosigma akashiwo was detected in Comau Fjord, Chilean Patagonia, resulting in a high mortality of farmed salmon (nearly 6000 tons of biomass) within 15 days. H. akashiwo cells were first detected at the head of the fjord on March 16, 2021 (up to 478 cells mL-1). On March 31, the cell density at the surface had reached a maximum of 2 × 105 cells mL-1, with intense brown spots visible on the water surface. Strong and persistent high-pressure anomalies over the southern tip of South America, consistent with the positive phase of the Southern Annular Mode (SAM), resulted in extremely dry conditions, high solar radiation, and strong southerly winds. A coupling of these features with the high water retention times inside the fjord can explain the spatial-temporal dynamics of this bloom event. Other factors, such as the internal local physical uplift process (favored by the north-to-south orientation of the fjord), salt-fingering events, and the uplift of subantarctic deep-water renewal, likely resulted in the injection of nutrients into the euphotic layer, which in turn could have promoted cell growth and thus high microalgal cell densities, such as reached by the bloom.


Subject(s)
Estuaries , Microalgae , Animals , Climate Change , Harmful Algal Bloom , Salmon , Chile , Water
6.
Sci Total Environ ; 798: 149241, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34333429

ABSTRACT

The postglacial Patagonian fjord system along the west coast of southern South America is one of the largest stretches of the southern hemisphere (SH) fjord belt, influenced by the SH westerly wind belt and continental freshwater input. This study reports a 3-year monthly time series (2017-2020) of physical and biogeochemical parameters obtained from the Reloncaví Marine Observatory (OMARE, Spanish acronym) at the northernmost embayment and fjord system of Patagonia. The main objective of this work was to understand the land-atmosphere-ocean interactions and to identify the mechanisms that modulate the density of phytoplankton. A key finding of this study was the seasonally varying asynchronous input of oceanic and estuarine water. Surface lower salinity and warmer estuarine water arrived in late winter to summer, contributing to water column stability, followed by subsurface higher salinity and less warmer oceanic water during fall-winter. In late winter 2019, an interannual change above the picnocline due to the record-high polarity of the Indian Ocean Dipole inhibited water column stability. The biogeochemical parameters (NO3-, NO2-, PO43-, Si(OH)4, pH, and dissolved oxygen) responded to the surface annual salinity variations, and oceanic water mass contributed greatly to the subsurface inorganic nutrient input. The water column N/P ratio indicated that no eutrophication occurred, even under intense aquaculture activity, likely because of the high ventilation dynamics of the Reloncaví Sound. Finally, a shift in phytoplankton composition, characterized by surface chlorophyll-a maxima in late winter and deepening of spring-summer blooms related to the physicochemical conditions of the water column, was observed. Our results support the ecosystem services provided by local oceanography processes in the north Patagonian fjords. Here, the anthropogenic impact caused by economic activities could be, in part, chemically reduced by the annual ventilation cycle mediated by the exchange of oceanic water masses into Patagonian fjords.


Subject(s)
Ecosystem , Estuaries , Environmental Monitoring , Indian Ocean , Oceanography , Phytoplankton , Seawater
7.
Sci Rep ; 11(1): 5530, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33750825

ABSTRACT

The decrease in freshwater input to the coastal system of the Southern Andes (40-45°S) during the last decades has altered the physicochemical characteristics of the coastal water column, causing significant environmental, social and economic consequences. Considering these impacts, the objectives were to analyze historical severe droughts and their climate drivers, and to evaluate the hydrological impacts of climate change in the intermediate future (2040-2070). Hydrological modelling was performed in the Puelo River basin (41°S) using the Water Evaluation and Planning (WEAP) model. The hydrological response and its uncertainty were compared using different combinations of CMIP projects (n = 2), climate models (n = 5), scenarios (n = 3) and univariate statistical downscaling methods (n = 3). The 90 scenarios projected increases in the duration, hydrological deficit and frequency of severe droughts of varying duration (1 to 6 months). The three downscaling methodologies converged to similar results, with no significant differences between them. In contrast, the hydroclimatic projections obtained with the CMIP6 and CMIP5 models found significant climatic (greater trends in summer and autumn) and hydrological (longer droughts) differences. It is recommended that future climate impact assessments adapt the new simulations as more CMIP6 models become available.

8.
Sci Total Environ ; 774: 145126, 2021 Jun 20.
Article in English | MEDLINE | ID: mdl-33611001

ABSTRACT

South American tropical climate is strongly related to the tropical low-pressure belt associated with the South American monsoon system. Despite its central societal role as a modulating agent of rainfall in tropical South America, its long-term dynamical variability is still poorly understood. Here we combine a new (and world's highest) tree-ring 14C record from the Altiplano plateau in the central Andes with other 14C records from the Southern Hemisphere during the second half of the 20th century in order to elucidate the latitudinal gradients associated with the dissemination of the bomb 14C signal. Our tree-ring 14C record faithfully captured the bomb signal of the 1960's with an excellent match to atmospheric 14C measured in New Zealand but with significant differences with a recent record from Southeast Brazil located at almost equal latitude. These results imply that the spreading of the bomb signal throughout the Southern Hemisphere was a complex process that depended on atmospheric dynamics and surface topography generating reversals on the expected north-south gradient in certain years. We applied air-parcel modeling based on climate data to disentangle their different geographical provenances and their preformed (reservoir affected) radiocarbon content. We found that air parcel trajectories arriving at the Altiplano during the bomb period were sourced i) from the boundary layer in contact with the Pacific Ocean (41%), ii) from the upper troposphere (air above the boundary layer, with no contact with oceanic or continental carbon reservoirs) (38%) and iii) from the Amazon basin (21%). Based on these results we estimated the ∆14C endmember values for the different carbon reservoirs affecting our record which suggest that the Amazon basin biospheric 14C isoflux could have been reversed from negative to positive as early as the beginning of the 1970's. This would imply a much faster carbon turnover rate in the Amazon than previously modelled.


Subject(s)
Bombs , Trees , Brazil , Oceans and Seas , Pacific Ocean
9.
Sci Total Environ ; 773: 145621, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33582350

ABSTRACT

Dinophysis acuta produces diarrhetic shellfish poisoning (DSP) toxins and pectenotoxins (PTX). It blooms in thermally-stratified shelf waters in late summer in temperate to cold temperate latitudes. Despite its major contribution to shellfish harvesting bans, little effort has been devoted to study its population dynamics in Chilean Patagonia. In 2017-2018, mesoscale distribution of harmful algal species (75 monitoring stations) revealed the initiation (late spring) and seasonal growth of a dense D. acuta population in the Aysén region, with maximal values at Puyuhuapi Fjord (PF). Vertical phytoplankton distribution and fine-resolution measurements of physical parameters along a 25-km transect in February 16th identified a 15-km (horizontal extension) subsurface thin layer of D. acuta from 4 to 8 m depth. This layer, disrupted at the confluence of PF with the Magdalena Sound, peaked at the top of the pycnocline (6 m, 15.9 °C, 23.4 psu) where static stability was maximal. By February 22nd, it deepened (8 m, 15.5 °C; 23.62 psu) following the excursions of the pycnocline and reached the highest density ever recorded (664 × 103 cells L-1) for this species. Dinophysis acuta was the dominant Dinophysis species in all microplankton net-tows/bottle samples; they all contained DSP toxins (OA, DTX-1) and PTX-2. Modeled flushing rates showed that Puyuhuapi, the only fjord in the area with 2 connections with the open sea, had the highest water residence time. Long term climate variability in the Southern hemisphere showed the effects of a Southern Annular Mode (SAM) in positive mode (+1.1 hPa) overwhelming a moderate La Niña. These effects included positive spring precipitation anomalies with enhanced salinity gradients and summer drought with positive anomalies in air (+1 °C) and sea surface (+2 °C) temperature. Locally, persistent thermal stratification in PF seemed to provide an optimal physical habitat for initiation and bloom development of D. acuta. Thus, in summer 2018, a favourable combination of meteorological and hydrographic processes of multiple scales created conditions that promoted the development of a widespread bloom of D. acuta with its epicentre at the head of Puyuhuapi fjord.


Subject(s)
Dinoflagellida , Shellfish Poisoning , Chile , Estuaries , Harmful Algal Bloom , Humans
10.
Plants (Basel) ; 9(11)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198222

ABSTRACT

Rising temperatures and increasing drought in Mediterranean-type climate areas are expected to affect plant-pollinator interactions, especially in plant species with specialised pollination. Central Chile experienced a mega drought between 2010 and 2020 which reached an extreme in the austral summer of 2019-2020. Based on intensive pollinator sampling and floral studies we show that the subalpine form of Mutisia subulata (Asteraceae) is a specialised hummingbird-pollinated species. In a two-year study which included the severest drought year, we quantified visitation frequency, flower-head density, flower-head visitation rates, two measures of floral longevity, nectar characteristics and seed set and monitored climatic variables to detect direct and indirect climate-related effects on pollinator visitation. Flower-head density, nectar standing crop and seed set were significantly reduced in the severest drought year while nectar concentration increased. The best model to explain visitation frequency included flower-head density, relative humidity, temperature, and nectar standing crop with highly significant effects of the first three variables. Results for flower-head density suggest hummingbirds were able to associate visual signals with reduced resource availability and/or were less abundant. The negative effect of lower relative humidity suggests the birds were able to perceive differences in nectar concentration. Reduced seed set per flower-head together with the availability of far fewer ovules in the 2019-2020 austral summer would have resulted in a major reduction in seed set. Longer and more intense droughts in this century could threaten local population persistence in M. subulata.

12.
Sci Rep ; 8(1): 1330, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29358586

ABSTRACT

A harmful algal bloom (HAB) of the raphidophyta alga Pseudochattonella cf. verruculosa during the 2016 austral summer (February-March) killed nearly 12% of the Chilean salmon production, causing the worst mass mortality of fish and shellfish ever recorded in the coastal waters of western Patagonia. The HAB coincided with a strong El Niño event and the positive phase of the Southern Annular Mode that altered the atmospheric circulation in southern South America and the adjacent Pacific Ocean. This led to very dry conditions and higher than normal solar radiation reaching the surface. Using time series of atmospheric, hydrologic and oceanographic data we show here that an increase in surface water temperature and reduced freshwater input resulted in a weakening of the vertical stratification in the fjords and sounds of this region. This allowed the advection of more saline and nutrient-rich waters, ultimately resulting in an active harmful algal bloom in coastal southern Chile.


Subject(s)
Climate , Harmful Algal Bloom , Chile , Microalgae/growth & development
13.
Ann Glob Health ; 81(3): 354-67, 2015.
Article in English | MEDLINE | ID: mdl-26615070

ABSTRACT

BACKGROUND: Chile has recently been reclassified by the World Bank from an upper-middle-income country to a high-income country. There has been great progress in the last 20 to 30 years in relation to air and water pollution in Chile. Yet after 25 years of unrestrained growth, there remain clear challenges posed by air and water pollution, as well as climate change. OBJECTIVE: The aim of this study was to review environmental health in Chile. METHODS: In late 2013, a 3-day workshop on environmental health was held in Santiago, Chile, bringing together researchers and government policymakers. As a follow-up to that workshop, here we review the progress made in environmental health in the past 20 to 30 years and discuss the challenges of the future. We focus on air and water pollution and climate change, which we believe are among the most important areas of environmental health in Chile. RESULTS: Air pollution in some cities remains among the highest in the continent. Potable water is generally available, but weak state supervision has led to serious outbreaks of infectious disease and ongoing issues with arsenic exposure in some regions. Climate change modeling in Chile is quite sophisticated, and a number of the impacts of climate change can be reasonably predicted in terms of which areas of the country are most likely to be affected by increased temperature and decreased availability of water, as well as expansion of vector territory. Some health effects, including changes in vector-borne diseases and excess heat mortality, can be predicted. However, there has yet to be an integration of such research with government planning. CONCLUSIONS: Although great progress has been made, currently there are a number of problems. We suspect that the Chilean experience in environmental health may be of some use for other Latin American countries with rapid economic development.


Subject(s)
Air Pollution , Climate Change , Environmental Health , Water Pollution , Chile , Humans , Public Health
SELECTION OF CITATIONS
SEARCH DETAIL
...