Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38350477

ABSTRACT

The filterscope diagnostic on DIII-D utilizes photomultiplier tubes to measure visible light emission from the plasma. The system has undergone a substantial upgrade since previous attempts to cross-calibrate the filterscope with other spectroscopic diagnostics were unsuccessful. The optics now utilize a dichroic mirror to initially split the light at nearly 99% transmission or reflectance for light below or above 550 nm. This allows the system to measure Dα emission without degrading visible light emission from the plasma for wavelengths below 550 nm (to measure Dß, Dγ, W-I, C-III, etc.). Additional optimization of the optical components and calibration techniques reduce the error in the signal up to 10% in some channels compared to previous methods. Cross-calibration measurements with two other high resolution spectroscopic diagnostics now show excellent agreement for the first time. This expands the capabilities of the filterscope system allowing measurement of divertor detachment, emission profiles, edge-localized mode behavior, and plasma-wall interactions. It also enables direct comparisons against calculations from boundary plasma simulations. These were not possible before.

2.
Rev Sci Instrum ; 92(6): 063002, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34243554

ABSTRACT

A diagnostic system, which has a design goal of high-portability, has been designed at Oak Ridge National Laboratory (ORNL). This project aims at providing measurements of key plasma parameters (ne, Te, ni, Ti) for fusion-relevant devices, utilizing Thomson scattering (TS) and optical emission spectroscopy (OES). The innovative design employs mostly commercial off-the-shelf instrumentation and a traveling team of researchers to conduct measurements at various magnetic-confinement plasma devices. The TS diagnostic uses a Quantel Q-smart 1500 Nd:YAG laser with a 2ω harmonic generator to produce up to 850 mJ of 532 nm laser pulses at 10 Hz. Collection optics placed at the detection port consists of an 11 × 3 optical fiber bundle, where the TS diagnostic uses an 11 × 1 subset array of the fibers, the OES diagnostic uses another 11 fibers, and the remaining fibers are available to the host institution. The detection system is comprised of two separate IsoPlane-320 spectrometers with triple-grating turrets of various line spacing and two PI-MAX 4 intensified CCD detectors, used simultaneously to measure a broad range of ion, impurity, and electron parameters. The self-contained diagnostic package also includes a data processing and storage system. The design and initial implementation of the TS-OES diagnostic system are described. The experiments from the proof-of-principle operation of the portable package on a high density (∼2.5 × 1022 m-3) and low-temperature (∼5 eV) electrothermal arc source at ORNL are also discussed.

3.
Nutr Diabetes ; 7(4): e260, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28394360

ABSTRACT

The sympathetic nervous system (SNS) regulates energy homeostasis in part by governing fatty acid liberation from adipose tissue. We first examined whether SNS activity toward discrete adipose depots changes in response to a weight loss diet in mice. We found that SNS activity toward each adipose depot is unique in timing, pattern of activation, and habituation with the most dramatic contrast between visceral and subcutaneous adipose depots. Sympathetic drive toward visceral epididymal adipose is more than doubled early in weight loss and then suppressed later in the diet when weight loss plateaued. Coincident with the decline in SNS activity toward visceral adipose is an increase in activity toward subcutaneous depots indicating a switch in lipolytic sources. In response to calorie restriction, SNS activity toward retroperitoneal and brown adipose depots is unaffected. Finally, pharmacological blockage of sympathetic activity on adipose tissue using the ß3-adrenergic receptor antagonist, SR59230a, suppressed loss of visceral adipose mass in response to diet. These findings indicate that SNS activity toward discrete adipose depots is dynamic and potentially hierarchical. This pattern of sympathetic activation is required for energy liberation and loss of adipose tissue in response to calorie-restricted diet.


Subject(s)
Caloric Restriction , Diet, Reducing , Energy Intake , Intra-Abdominal Fat/metabolism , Norepinephrine/metabolism , Obesity/metabolism , Sympathetic Nervous System/physiology , Adipose Tissue, Brown/innervation , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/innervation , Adipose Tissue, White/metabolism , Adiposity , Adrenergic beta-3 Receptor Antagonists/pharmacology , Animals , Body Weight , Energy Metabolism , Epididymis/innervation , Epididymis/metabolism , Intra-Abdominal Fat/innervation , Lipolysis , Male , Mice, Inbred C57BL , Obesity/diet therapy , Peritoneum , Propanolamines/pharmacology , Subcutaneous Fat/innervation , Subcutaneous Fat/metabolism , Weight Loss
4.
Genes Brain Behav ; 16(3): 394-403, 2017 03.
Article in English | MEDLINE | ID: mdl-27762066

ABSTRACT

Dopamine (DA) is a neurotransmitter with conserved behavioral roles between invertebrate and vertebrate animals. In addition to its neural functions, in insects DA is a critical substrate for cuticle pigmentation and hardening. Drosophila tyrosine hydroxylase (DTH) is the rate limiting enzyme for DA biosynthesis. Viable brain DA-deficient flies were previously generated using tissue-selective GAL4-UAS binary expression rescue of a DTH null mutation and these flies show specific behavioral impairments. To circumvent the limitations of rescue via binary expression, here we achieve rescue utilizing genomically integrated mutant DTH. As expected, our DA-deficient flies have no detectable DTH or DA in the brain, and show reduced locomotor activity. This deficit can be rescued by l-DOPA/carbidopa feeding, similar to human Parkinson's disease treatment. Genetic rescue via GAL4/UAS-DTH was also successful, although this required the generation of a new UAS-DTH1 transgene devoid of most untranslated regions, as existing UAS-DTH transgenes express in the brain without a Gal4 driver via endogenous regulatory elements. A surprising finding of our newly constructed UAS-DTH1m is that it expresses DTH at an undetectable level when regulated by dopaminergic GAL4 drivers even when fully rescuing DA, indicating that DTH immunostaining is not necessarily a valid marker for DA expression. This finding necessitated optimizing DA immunohistochemistry, showing details of DA innervation to the mushroom body and the central complex. When DA rescue is limited to specific DA neurons, DA does not diffuse beyond the DTH-expressing terminals, such that DA signaling can be limited to very specific brain regions.


Subject(s)
Brain/metabolism , Dopamine/deficiency , Drosophila/metabolism , Animals , Disease Models, Animal , Dopamine/genetics , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Drosophila/genetics , Levodopa/metabolism , Male , Neurotransmitter Agents/metabolism , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
5.
J Pharmacol Exp Ther ; 329(1): 2-13, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19141710

ABSTRACT

We have cloned and pharmacologically characterized the A(2B) adenosine receptor (AR) from the dog, rabbit, and mouse. The full coding regions of the dog and mouse A(2B)AR were obtained by reverse transcriptase-polymerase chain reaction, and the rabbit A(2B)AR cDNA was obtained by screening a rabbit brain cDNA library. It is noteworthy that an additional clone was isolated by library screening that was identical in sequence to the full-length rabbit A(2B)AR, with the exception of a 27-base pair deletion in the region encoding amino acids 103 to 111 (A(2B)AR(103-111)). This 9 amino acid deletion is located in the second intracellular loop at the only known splice junction of the A(2B)AR and seems to result from the use of an additional 5' donor site found in the rabbit and dog but not in the human, rat, or mouse sequences. [(3)H]3-Isobutyl-8-pyrrolidinoxanthine and 8-[4-[((4-cyano-[2,6-(3)H]-phenyl)carbamoylmethyl)oxy]phenyl]-1,3-di(n-propyl)xanthine ([(3)H]MRS 1754) bound with high affinity to membranes prepared from human embryonic kidney (HEK) 293 cells expressing mouse, rabbit, and dog A(2B)ARs. Competition binding studies performed with a panel of agonist (adenosine and 2-amino-3,5-dicyano-4-phenylpyridine analogs) and antagonist ligands identified similar potency orders for the A(2B)AR orthologs, although most xanthine antagonists displayed lower binding affinity for the dog A(2B)AR compared with A(2B)ARs from rabbit and mouse. No specific binding could be detected with membranes prepared from HEK 293 cells expressing the rabbit A(2B)AR(103-111) variant. Furthermore, the variant failed to stimulate adenylyl cyclase or calcium mobilization. We conclude that significant differences in antagonist pharmacology of the A(2B)AR exist between species and that some species express nonfunctional variants of the A(2B)AR due to "leaky" splicing.


Subject(s)
Receptor, Adenosine A2B/genetics , Acetamides/pharmacology , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosine A2 Receptor Agonists , Adenosine A2 Receptor Antagonists , Amino Acid Sequence , Animals , Brain Chemistry/drug effects , Brain Chemistry/genetics , Calcium/metabolism , Cell Line , Cloning, Molecular , Cyclic AMP/metabolism , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Dogs , Humans , Ligands , Mice , Molecular Sequence Data , Purines/pharmacology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rabbits , Radioligand Assay , Reverse Transcriptase Polymerase Chain Reaction , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...