Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(50): 47516-47524, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31741388

ABSTRACT

Due to recent breakthroughs in silicon photonics, sub-band-gap photodetection in silicon (Si) has become vital to the development of next-generation integrated photonic devices for telecommunication systems. In particular, photodetection in Si using complementary metal-oxide semiconductor (CMOS) compatible materials is in high demand for cost-effective integration. Here, we achieve broad-band near-infrared photodetection in Si/metal-oxide Schottky junctions where the photocurrent is generated from interface defects induced by aluminum-doped zinc oxide (AZO) films deposited on a Si substrate. The combination of photoexcited carrier generation from both interface defect states and intrinsic Si bulk defect states contributes to a photoresponse of 1 mA/W at 1325 nm and 0.22 mA/W at 1550 nm with zero-biasing. From a fit to the Fowler equation for photoemission, we quantitatively determine the individual contributions from these effects. Finally, using this analysis, we demonstrate a gold-nanoparticle-coated photodiode that has three distinct photocurrent responses resulting from hot carriers in the gold, interface defects from the AZO, and bulk defects within the Si. The hot carrier response is found to dominate near the band gap of Si, while the interface defects dominate for longer wavelengths.

2.
ACS Nano ; 13(2): 1538-1546, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30586503

ABSTRACT

Perovskite solar cells that incorporate small concentrations of Cs in their A-site have shown increased lifetime and improved device performance. Yet, the development of fully stable devices operating near the theoretical limit requires understanding how Cs influences perovskites' electrical properties at the nanoscale. Here, we determine how the chemical composition of three perovskites (MAPbBr3, MAPbI3, and Cs-mixed) affects their short- and long-term voltage stabilities, with <50 nm spatial resolution. We map an anomalous irreversible electrical signature on MAPbBr3 at the mesoscale, resulting in local V oc variations of ∼400 mV, and in entire grains with negative contribution to the V oc. These measurements prove the necessity of high spatial resolution mapping to elucidate the fundamental limitations of this emerging material. Conversely, we capture the fully reversible voltage response of Cs-mixed perovskites, composed by Cs0.06(MA0.17FA0.83)0.94Pb(I0.83Br0.17)3, demonstrating that the desired electrical output persists even at the nanoscale. The Cs-mixed material presents no spatial variation in V oc, as ion motion is restricted. Our results show that the nanoscale electrical behavior of the perovskites is intimately connected to their chemical composition and macroscopic response.

3.
Nature ; 564(7736): 386-389, 2018 12.
Article in English | MEDLINE | ID: mdl-30568194

ABSTRACT

Intermolecular forces are pervasive in nature and give rise to various phenomena including surface wetting1, adhesive forces in biology2,3, and the Casimir effect4, which causes two charge-neutral, metal objects in vacuum to attract each other. These interactions are the result of quantum fluctuations of electromagnetic waves and the boundary conditions imposed by the interacting materials. When the materials are optically anisotropic, different polarizations of light experience different refractive indices and a torque is expected to occur that causes the materials to rotate to a position of minimum energy5,6. Although predicted more than four decades ago, the small magnitude of the Casimir torque has so far prevented direct measurements of it. Here we experimentally measure the Casimir torque between two optically anisotropic materials-a solid birefringent crystal (calcite, lithium niobite, rutile or yttrium vanadate) and a liquid crystal (5CB). We control the sign and strength of the torque, and its dependence on the rotation angle and the separation distance between the materials, through the choice of materials. The values that we measure agree with calculations, verifying the long-standing prediction that a mechanical torque induced by quantum fluctuations can exist between two separated objects. These results open the door to using the Casimir torque as a micro- or nanoscale actuation mechanism, which would be relevant for a range of technologies, including microelectromechanical systems and liquid crystals.

4.
ACS Appl Mater Interfaces ; 10(34): 28850-28859, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30113805

ABSTRACT

The spatial resolution of atomic force microscopy (AFM) needed to resolve material interfaces is limited by the tip-sample separation ( d) dependence of the force used to record an image. Here, we present a new multiscale functional imaging technique that allows for in situ tunable spatial resolution, which can be applied to a wide range of inhomogeneous materials, devices, and interfaces. Our approach uses a multifrequency method to generate a signal whose d-dependence is controlled by mixing harmonics of the cantilever's oscillation with a modulated force. The spatial resolution of the resulting image is determined by the signal's d-dependence. Our measurements using harmonic mixing (HM) show that we can change the d-dependence of a force signal to improve spatial resolution by up to a factor of two compared to conventional methods. We demonstrate the technique with both Kelvin probe force microscopy (KPFM) and bimodal AFM to show its generality. Bimodal AFM with harmonic mixing actuation separates conservative from dissipative forces and is used to identify the regions of adhesive residue on exfoliated graphene. Our electrostatic measurements with open-loop KPFM demonstrate that multiple force modulations may be applied at once. Further, this method can be applied to any tip-sample force that can be modulated, for example, electrostatic, magnetic, and photoinduced forces, showing its universality. Because HM enables in situ switching between high sensitivity and high spatial resolution with any periodic driving force, we foresee this technique as a critical advancement for multiscale functional imaging.

5.
Phys Rev Lett ; 120(4): 040401, 2018 Jan 26.
Article in English | MEDLINE | ID: mdl-29437434

ABSTRACT

Complex interaction geometries offer a unique opportunity to modify the strength and sign of the Casimir force. However, measurements have traditionally been limited to sphere-plate or plate-plate configurations. Prior attempts to extend measurements to different geometries relied on either nanofabrication techniques that are limited to only a few materials or slight modifications of the sphere-plate geometry due to alignment difficulties of more intricate configurations. Here, we overcome this obstacle to present measurements of the Casimir force between two gold spheres using an atomic force microscope. Force measurements are alternated with topographical scans in the x-y plane to maintain alignment of the two spheres to within approximately 400 nm (∼1% of the sphere radii). Our experimental results are consistent with Lifshitz's theory using the proximity force approximation (PFA), and corrections to the PFA are bounded using nine sphere-sphere and three sphere-plate measurements with spheres of varying radii.

6.
Nano Lett ; 17(4): 2554-2560, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28226210

ABSTRACT

Hybrid organic-inorganic perovskites based on methylammonium lead (MAPbI3) are an emerging material with great potential for high-performance and low-cost photovoltaics. However, for perovskites to become a competitive and reliable solar cell technology their instability and spatial variation must be understood and controlled. While the macroscopic characterization of the devices as a function of time is very informative, a nanoscale identification of their real-time local optoelectronic response is still missing. Here, we implement a four-dimensional imaging method through illuminated heterodyne Kelvin probe force microscopy to spatially (<50 nm) and temporally (16 s/scan) resolve the voltage of perovskite solar cells in a low relative humidity environment. Local open-circuit voltage (Voc) images show nanoscale sites with voltage variation >300 mV under 1-sun illumination. Surprisingly, regions of voltage that relax in seconds and after several minutes consistently coexist. Time-dependent changes of the local Voc are likely due to intragrain ion migration and are reversible at low injection level. These results show for the first time the real-time transient behavior of the Voc in perovskite solar cells at the nanoscale. Understanding and controlling the light-induced electrical changes that affect device performance are critical to the further development of stable perovskite-based solar technologies.

7.
Nanotechnology ; 27(24): 245705, 2016 Jun 17.
Article in English | MEDLINE | ID: mdl-27159082

ABSTRACT

Kelvin probe force microscopy (KPFM) adapts an atomic force microscope to measure electric potential on surfaces at nanometer length scales. Here we demonstrate that Heterodyne-KPFM enables scan rates of several frames per minute in air, and concurrently maintains spatial resolution and voltage sensitivity comparable to frequency-modulation KPFM, the current spatial resolution standard. Two common classes of topography-coupled artifacts are shown to be avoidable with H-KPFM. A second implementation of H-KPFM is also introduced, in which the voltage signal is amplified by the first cantilever resonance for enhanced sensitivity. The enhanced temporal resolution of H-KPFM can enable the imaging of many dynamic processes, such as such as electrochromic switching, phase transitions, and device degredation (battery, solar, etc), which take place over seconds to minutes and involve changes in electric potential at nanometer lengths.

8.
J Phys Condens Matter ; 27(21): 214012, 2015 Jun 03.
Article in English | MEDLINE | ID: mdl-25964997

ABSTRACT

Measurements of the Casimir force require the elimination of the electrostatic force between the surfaces. However, due to electrostatic patch potentials, the voltage required to minimize the total force may not be sufficient to completely nullify the electrostatic interaction. Thus, these surface potential variations cause an additional force, which can obscure the Casimir force signal. In this paper, we inspect the spatially varying surface potential of e-beamed, sputtered, sputtered and annealed, and template stripped gold surfaces with Heterodyne amplitude modulated Kelvin probe force microscopy (HAM-KPFM). It is demonstrated that HAM-KPFM improves the spatial resolution of surface potential measurements compared to amplitude modulated Kelvin probe force microscopy. We find that patch potentials vary depending on sample preparation, and that the calculated pressure can be similar to the pressure difference between Casimir force calculations employing the plasma and Drude models.

SELECTION OF CITATIONS
SEARCH DETAIL
...