Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Curr Biol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38936366

ABSTRACT

Dinophysis dinoflagellates are predators of Mesodinium ciliates, from which they retain only the plastids of cryptophyte origin. The absence of nuclear photosynthetic cryptophyte genes in Dinophysis raises intriguing physiological and evolutionary questions regarding the functional dynamics of these temporary kleptoplastids within a foreign cellular environment. In an experimental setup including two light conditions, the comparative analysis with Mesodinium rubrum and the cryptophyte Teleaulax amphioxeia revealed that Dinophysis acuminata possessed a smaller and less dynamic functional photosynthetic antenna for green light, a function performed by phycoerythrin. We showed that the lack of the cryptophyte nucleus prevented the synthesis of the phycoerythrin α subunit, thereby hindering the formation of a complete phycoerythrin in Dinophysis. In particular, biochemical analyses showed that Dinophysis acuminata synthesized a poorly stable, incomplete phycoerythrin composed of chromophorylated ß subunits, with impaired performance. We show that, consequently, a continuous supply of new plastids is crucial for growth and effective photoacclimation in this organism. Transcriptome analyses revealed that all examined strains of Dinophysis spp. have acquired the cryptophyte pebA and pebB genes through horizontal gene transfer, suggesting a potential ability to synthesize the phycobilin pigments bound to the cryptophyte phycoerythrin. By emphasizing that a potential long-term acquisition of the cryptophyte plastid relies on establishing genetic independence for essential functions such as light harvesting, this study highlights the intricate molecular challenges inherent in the enslavement of organelles and the processes involved in the diversification of photosynthetic organisms through endosymbiosis.

2.
BMC Evol Biol ; 19(1): 127, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31216987

ABSTRACT

BACKGROUND: Studying variation in life-history traits and correlated behaviours, such as boldness and foraging (i.e., pace-of-life syndrome), allows us to better understand how these traits evolve in a changing environment. In fish, it is particularly relevant studying the interplay of resource abundance and size-selection. These are two environmental stressors affecting fish in natural conditions, but also associated with human-induced environmental change. For instance, fishing, one of the most important threats for freshwater and marine populations, results in both higher mortality on large-sized fish and reduced population density. RESULTS: Medaka, Oryzias latipes, from lines selected for large or small size over ten generations, were exposed individually to high or low food availability from birth to adulthood. Maturation schedules, reproductive investment, growth, boldness and feeding were assessed to evaluate the effect of size-selection on the pace of life, and whether it differed between food contexts (high and low). Different food abundance and size-selection resulted in diverse life histories associated with different feeding and boldness behaviour, thus showing different pace-of-life-syndromes. High availability of food favoured faster growth, earlier maturation and increased shyness. Selection for small size led to slower growth in both males and females. But, the life-history trajectory to reach such growth was sex- and food-specific. Under low food conditions, females selected for small size showed earlier maturation, which led to slower adult growth and subsequent low willingness to feed, compared to females selected for large size. No line differences were found in females at high food conditions. In contrast, males exposed to selection for small size grew slower both as juvenile and adult, and were bolder under both feeding regimes. Therefore, the response to size-selection was more sensitive to food availability in females than in males. CONCLUSIONS: We showed that size-selection (over ten generations) and resource abundance (over developmental time) led to changes in life history and behaviour. However, the effect of size-selection was sex- and context-specific, calling for precaution when drawing general conclusions on the population-level effects (or lack of them) of size-selective fishing. Conservation and management plans should consider this sex- and context-specificity.


Subject(s)
Oryzias/genetics , Oryzias/physiology , Animals , Biological Evolution , Body Size , Conservation of Natural Resources , Female , Male , Phenotype , Reproduction , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...