Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975622

ABSTRACT

High oxidation state metal cations in the form of oxides, oxoanions, or oxoperoxoanions have diverse roles in carbon dioxide removal (direct air capture and point source). Features include providing basic oxygens for chemisorption reactions, direct binding of carbonate, and catalyzing low-temperature CO2 release to regenerate capture media. Moreover, metal oxides and aqueous metal-oxo species are stable in harsh, point-source conditions. Here, we demonstrate aqueous niobium polyoxometalate (POM) carbon capture ability, specifically [Nb6O19]8-, Nb6. Upon exposure of aqueous Nb6 to CO2, Nb6 fragments and binds chemisorbed carbonate, evidenced by crystallization of Nb-carbonate POMs including [Nb22O53(CO3)16]28-and [Nb10O25(CO3)6]12-. While Rb/Cs+ counter cations yield crystal structures to understand the chemisorption processes, K+ counter cations enable higher capture efficiency (based on CO3/Nb ratio), determined by CHN analysis and thermogravimetry-mass spectrometry of the isolated solids. Sum frequency generation spectroscopy also showed higher carbon capture efficiency of the K-Nb6 solutions at the air-water interface, while small-angle X-ray scattering (SAXS) provided insights into the role of the alkalis in influencing these processes. Tetramethylammonium counter cations, like K+, demonstrate high efficiency of carbonate chemisorption at the interface, but SAXS and Raman of the bulk showed a predominance of a Nb24-POM (HxNb24O72, x ∼ 9) that does not bind carbonate. Control experiments show that carbonate detected at the interface is Nb-bound, and the Nb-carbonate species are stabilized by alkalis, demonstrating their supporting role in aqueous Nb-POM CO2 chemisorption. Of fundamental importance, this study presents rare examples of directing POM speciation with a gas, instead of liquid phase acid or base.

2.
J Am Chem Soc ; 142(41): 17508-17514, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32965108

ABSTRACT

Polyoxometalate molybdenum blue (MB) complexes typically exist as discrete multianionic clusters and are composed of repeating Mo building units. MB wheels such as {Mo176} and {Mo154} are made from pentagon-centered {Mo8} building blocks joined by equal number of {Mo1} units as loin, and {Mo2} dimer units as skirt along the ring edge, with the ring sizes of the MB wheels modulated by the {Mo2} units. Herein we report a new class of contracted lanthanide-doped MB structures that have replaced all the {Mo2} units with lanthanide ions on the inner rim, giving the general formula {Mo90Ln10}. We show three examples of this new decameric {Mo90Ln10} (Ln = La, Ce, and Pr) framework synthesized by high temperature reduction and demonstrate that later Ln ions result in {Mo92Ln9} (Ln = Nd, Sm), conserving one {Mo2} linker unit in its structure, as a consequence of the lanthanide contraction. Remarkably the {Mo90Ln10} compounds are the first examples of charge-neutral molybdate wheels as confirmed by BVS, solubility experiments, and redox titrations. We detail our full synthetic optimization for the isolation of these clusters and complete characterization by X-ray, TGA, UV-vis, and ICP studies. Finally, we show that this fine-tuned self-assembly process can be utilized to selectively enrich Ln-MB wheels for effective separation of lanthanides.

SELECTION OF CITATIONS
SEARCH DETAIL
...