Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 11(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36009988

ABSTRACT

BACKGROUND: Persistent and relapsing prosthetic joint infection (PJI) due to Staphylococcus aureus presents a clinical challenge. This study aimed to provide an extensive description of phenotypic and genomic changes that could be related to persistence or relapse. METHODS: Initial and second S. aureus isolates from 6 cases of persistent and relapsing PJI, along with clinical isolates from 8 cases, with favorable outcome were included. All isolates were studied by phenotypic and genotypic approaches. RESULTS: Recurrent S. aureus isolates exhibited a significant increase in adhesive capacity, invasion and persistence compared to resolved isolates. No association was found for the presence or absence of certain genes with the persistence or relapse of PJI. All sequential isolates showed identical sequence type (ST). Resistance gene loss during the infection and a great diversity of variants in different virulence genes between the pair of strains, mainly in genes encoding adhesins such as fnbA, were observed. CONCLUSIONS: S. aureus-caused relapse and persistence PJI is associated with bacterial phenotypical and genotypical adaptation. The main paths of adaptation were persistence in the intracellular compartment, and the loss of antibiotic resistance genes and variant acquisition, especially in genes encoding adhesins.

2.
PLoS One ; 7(9): e44962, 2012.
Article in English | MEDLINE | ID: mdl-23028704

ABSTRACT

Sirenomelia is a severe congenital malformation of the lower body characterized by the fusion of the legs into a single lower limb. This striking external phenotype consistently associates severe visceral abnormalities, most commonly of the kidneys, intestine, and genitalia that generally make the condition lethal. Although the causes of sirenomelia remain unknown, clinical studies have yielded two major hypotheses: i) a primary defect in the generation of caudal mesoderm, ii) a primary vascular defect that leaves the caudal part of the embryo hypoperfused. Interestingly, Sirenomelia has been shown to have a genetic basis in mice, and although it has been considered a sporadic condition in humans, recently some possible familial cases have been reported. Here, we report that the removal of one or both functional alleles of Shh from the Bmp7-null background leads to a sirenomelia phenotype that faithfully replicates the constellation of external and internal malformations, typical of the human condition. These mutants represent an invaluable model in which we have analyzed the pathogenesis of sirenomelia. We show that the signaling defect predominantly impacts the morphogenesis of the hindgut and the development of the caudal end of the dorsal aortas. The deficient formation of ventral midline structures, including the interlimb mesoderm caudal to the umbilicus, leads to the approximation and merging of the hindlimb fields. Our study provides new insights for the understanding of the mechanisms resulting in caudal body malformations, including sirenomelia.


Subject(s)
Bone Morphogenetic Protein 7/genetics , Disease Models, Animal , Ectromelia/embryology , Embryo, Mammalian/abnormalities , Gene Deletion , Hedgehog Proteins/genetics , Phenotype , Animals , Bone Morphogenetic Protein 7/deficiency , Bone and Bones/abnormalities , Bone and Bones/embryology , Cell Death/genetics , Cell Proliferation , Ectromelia/genetics , Ectromelia/pathology , Hedgehog Proteins/deficiency , Humans , Lower Extremity/embryology , Lower Extremity/pathology , Mice
3.
Dis Model Mech ; 4(3): 289-99, 2011 May.
Article in English | MEDLINE | ID: mdl-21504909

ABSTRACT

Sirenomelia, also known as sirenomelia sequence, is a severe malformation of the lower body characterized by fusion of the legs and a variable combination of visceral abnormalities. The causes of this malformation remain unknown, although the discovery that it can have a genetic basis in mice represents an important step towards the understanding of its pathogenesis. Sirenomelia occurs in mice lacking Cyp26a1, an enzyme that degrades retinoic acid (RA), and in mice that develop with reduced bone morphogenetic protein (Bmp) signaling in the caudal embryonic region. The phenotypes of these mutant mice suggest that sirenomelia in humans is associated with an excess of RA signaling and a deficit in Bmp signaling in the caudal body. Clinical studies of sirenomelia have given rise to two main pathogenic hypotheses. The first hypothesis, based on the aberrant abdominal and umbilical vascular pattern of affected individuals, postulates a primary vascular defect that leaves the caudal part of the embryo hypoperfused. The second hypothesis, based on the overall malformation of the caudal body, postulates a primary defect in the generation of the mesoderm. This review gathers experimental and clinical information on sirenomelia together with the necessary background to understand how deviations from normal development of the caudal part of the embryo might lead to this multisystemic malformation.


Subject(s)
Limb Deformities, Congenital/pathology , Animals , Disease Models, Animal , Ectromelia/etiology , Ectromelia/genetics , Ectromelia/pathology , Humans , Lower Extremity Deformities, Congenital/etiology , Lower Extremity Deformities, Congenital/genetics , Lower Extremity Deformities, Congenital/pathology , Models, Biological , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...