Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Foods ; 13(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38890864

ABSTRACT

Loop-mediated isothermal amplification, LAMP, is nowadays the most popular isothermal nucleic acid amplification technique, and as such, several commercial, ready-to-use master mixes have flourished. Unfortunately, independent studies to determine their performance are limited. The current study performed an independent evaluation of the existing ready-to-use commercial LAMP master mixes WarmStart® LAMP Kit, LavaLAMP™ DNA Master Mix, Saphir Bst Turbo GreenMaster, OptiGene Fast Master Mix ISO-004, and SynLAMP Mix. To reduce bias, three different genes, namely ttr (Salmonella spp.), rfbE (E. coli O157), and hly (Listeria monocytogenes), were targeted. The comparison was based on amplification speed, performance with decreasing DNA concentrations, and the effect of five typical LAMP reaction additives (betaine, DMSO, pullulan, TMAC, and GuHCl). Significant differences were observed among the different master mixes. OptiGene provided the fastest amplification and showed less detrimental effects associated with the supplements evaluated. Out of the chemicals tested, pullulan provided the best results in terms of amplification speed. It is noteworthy that the different additives impacted the master mixes differently. Overall, the current study provides insights into the performance of commercial LAMP master mixes, which can be of value for the scientific community to better select appropriate reagents when developing new methods.

3.
Curr Res Food Sci ; 8: 100716, 2024.
Article in English | MEDLINE | ID: mdl-38511154

ABSTRACT

Rapid identification of Shiga toxin-producing Escherichia coli, or STEC, is of utmost importance to assure the innocuousness of the foodstuffs. STEC have been implicated in outbreaks associated with different types of foods however, among them, ready-to-eat (RTE) vegetables are particularly problematic as they are consumed raw, and are rich in compounds that inhibit DNA-based detection methods such as qPCR. In the present study a novel method based on Loop-mediated isothermal amplification (LAMP) to overcome the limitations associated with current molecular methods for the detection of STEC in RTE vegetables targeting stx1 and stx2 genes. In this sense, LAMP demonstrated to be more robust against inhibitory substances in food. In this study, a comprehensive enrichment protocol was combined with four inexpensive DNA extraction protocols. The one based on silica purification enhanced the performance of the method, therefore it was selected for its implementation in the final method. Additionally, three different detection chemistries were compared, namely real-time fluorescence detection, and two end-point colorimetric strategies, one based on the addition of SYBR Green, and the other based on a commercial colorimetric master mix. After optimization, all three chemistries demonstrated suitable for the detection of STEC in spiked RTE salad samples, as it was possible to reach a LOD50 of 0.9, 1.4, and 7.0 CFU/25 g for the real-time, SYBR and CC LAMP assays respectively. All the performance parameters reached values higher than 90 %, when compared to a reference method based on multiplex qPCR. More specifically, the analytical sensitivity was 100, 90.0 and 100 % for real-time, SYBR and CC LAMP respectively, the specificity 100 % for all three assays, and accuracy 100, 96 and 100 %. Finally, a high degree of concordance was also obtained (1, 0.92 and 1 respectively). Considering the current technological advances, the method reported, using any of the three detection strategies, demonstrated suitable for their implementation in decentralized settings, with low equipment resources.

4.
Front Microbiol ; 14: 1254692, 2023.
Article in English | MEDLINE | ID: mdl-38107857

ABSTRACT

Introduction: Whole Genome Sequencing (WGS) implementation in food safety laboratories is a significant advancement in food pathogen control and outbreak tracking. However, the initial investment for acquiring next-generation sequencing platforms and the need for bioinformatic skills represented an obstacle for the widespread use of WGS. Long-reading technologies, such as the one developed by Oxford Nanopore Technologies, can be easily implemented with a minor initial investment and with simple protocols that can be performed with basic laboratory equipment. Methods: Herein, we report a simple MinION Galaxy-based workflow with analysis parameters that allow its implementation in food safety laboratories with limited computer resources and without previous knowledge in bioinformatics for rapid Salmonella serotyping, virulence, and identification of antimicrobial resistance genes. For that purpose, the single use Flongle flow cells, along with the MinION Mk1B for WGS, and the community-driven web-based analysis platform Galaxy for bioinformatic analysis was used. Three strains belonging to three different serotypes, monophasic S. Typhimurium, S. Grancanaria, and S. Senftenberg, were sequenced. Results: After 24 h of sequencing, enough coverage was achieved in order to perform de novo assembly in all three strains. After evaluating different tools, Flye de novo assemblies with medaka polishing were shown to be optimal for in silico Salmonella spp. serotyping with SISRT tool followed by antimicrobial and virulence gene identification with ABRicate. Discussion: The implementation of the present workflow in food safety laboratories with limited computer resources allows a rapid characterization of Salmonella spp. isolates.

5.
Polymers (Basel) ; 15(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37765613

ABSTRACT

Chitosan is obtained from the deacetylation of chitin, and it is known to possess antimicrobial activity. It has attracted attention as it may be used for treating infections caused by different types of microorganisms due to its broad spectrum. Its application in the form of micro- or nanoparticles (CM/CN) has expanded its usage, as in this form, it retains its activity, and remain stable in aqueous solutions. However, inconsistencies in the results reported by different authors have been identified. In this communication, the antimicrobial activity of CN produced from different starting materials was tested against Listeria monocytogenes. It was observed that, even though all the starting materials were reported to have a molecular weight (MW) below 200 kDa and degree of deacetylation (DD) > 75%, the size of the CNs were significantly different (263 nm vs. 607 nm). Furthermore, these differences in sizes exerted a direct effect on the antimicrobial properties of the particles, as when testing the ones with the smallest size, i.e., 263 nm, a lower Minimum Inhibitory Concentration (MIC) was achieved, i.e., 0.04 mg/mL. Even though the largest particles, i.e., 607 nm, in individual experiments were able to achieve an MIC of 0.03 mg/mL, the results with CN presented great variation among replicates and up to 0.2 mg/mL were needed in other replicates. The starting material has a critical impact on the properties of the CN, and it must be carefully characterized and selected for the intended application, and MW and DD solely do not fully account for these properties.

6.
Food Microbiol ; 115: 104341, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567642

ABSTRACT

Salmonella Enteritidis is the main serotype responsible for human salmonellosis in the European Union. One of the main sources of Salmonella spp. in the food chain are poultry products, such as eggs or chicken meat. In recent years, molecular methods have become an alternative to culture dependent methods for the rapid screening of Salmonella spp. In this work, the strain S. Enteritidis S1400, and previously isolated and characterized bacteriophage PVP-SE2, were used to develop and evaluate a same-day detection method combining Phage Amplification and Loop-mediated isothermal amplification (PA-LAMP) to specifically detect viable S. Enteritidis in chicken breast. This method is based on the detection of the phage DNA rather than bacterial DNA. The virus is added to the sample during pre-enrichment in buffered peptone water, where it replicates in the presence of viable S. Enteritidis. The detection of phage DNA allows, on the one hand to detect viable bacteria, since viruses only replicate in them, and on the other hand to increase the sensitivity of the method since for each infected S. Enteritidis cell, hundreds of new viruses are produced. Two different PA-LAMP detection strategies were evaluated, a real time fluorescence and a naked-eye detection. The present method could down to 0.2 fg/µL of pure phage DNA and a concentration of viral particles of 2.2 log PFU/mL. After a short Salmonella recovery step of 3 h and a co-culture of 4 h of the samples with phage particles, both real-time fluorescence and naked-eye method showed a LoD95 of 6.6 CFU/25 g and a LoD50 of 1.5/25 g in spiked chicken breast samples. The entire detection process, including DNA extraction and LAMP analysis, can be completed in around 8 h. In the current proof-of-concept, the novel PA-LAMP obtained comparable results to those of the reference method ISO 6579, to detect Salmonella Enteritidis in poultry meat.


Subject(s)
Bacteriophages , Salmonella enteritidis , Animals , Humans , Salmonella enteritidis/genetics , Poultry , Food Microbiology , Meat/microbiology
7.
Methods Mol Biol ; 2967: 63-73, 2023.
Article in English | MEDLINE | ID: mdl-37608103

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) is a group of human foodborne pathogens transmitted to humans through the consumption of different types of food. Their detection is mainly performed by targeting specific serogroups by classical microbiological methods and, later, by molecular typing with different techniques. The application of multiplex real-time PCR (qPCR) can significantly improve the turnaround time of the existing methodologies as in one single run it is possible to detect and characterize specific microorganisms. In the present chapter, a pentaplex qPCR assay is described for the identification of STEC which may also be applied for the rapid screening of these pathogens in different types of foods. The assay targets the most important virulence factors of these microorganisms, the genes stx1, stx2, and eae, along with the rfbE gene which encodes for the "O157" antigen as this is the most prevalent serogroup among all STEC, as well as an internal amplification control to rule out false-negative results due to qPCR inhibition.


Subject(s)
Shiga-Toxigenic Escherichia coli , Humans , Shiga-Toxigenic Escherichia coli/genetics , Real-Time Polymerase Chain Reaction , Food , Biological Assay , Microbiological Techniques
8.
Talanta ; 260: 124642, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37167680

ABSTRACT

Loop-mediated isothermal amplification, or LAMP, is nowadays the most popular isothermal nucleic acid amplification technique. This technique implements a minimum of four primers, named outer (F3/B3) and inner primers (FIP/BIP). The inner primers hybridize in two distinct regions, and some studies have reported that the usage of a linker, typically composed of four thymines, in the middle of these primers can improve assay performance. In addition to this, dual-priming oligonucleotides, DPO, have been reported to provide highly specific reducing non-specific amplifications. Considering the large number of primers implemented in LAMP assays, in the current study the suitability of DPO primers replacing regular outer primers; and their combination with different linker sequences in the inner primers were explored. The results demonstrated that replacing standard F3/B3 by DPO primers does not significantly affect that overall performance of the assay, and provides additional stability to temperature changes. This observations were consistent regardless the type of linker implemented in the inner primers, out of which in the current study a linker composed of thymines significantly outperformed the other options tested, most likely due to a combination of sequence and physical structure.


Subject(s)
Nucleic Acid Amplification Techniques , Oligonucleotides , DNA Primers , Nucleic Acid Amplification Techniques/methods , DNA, Bacterial , Sensitivity and Specificity
9.
Anal Chim Acta ; 1267: 341357, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37257973

ABSTRACT

BACKGROUND: Ready-to-eat products, such as leafy greens, must be carefully controlled as they are directly consumed without any treatment to reduce the presence of potential pathogens. Food industries, especially those that process products with short shelf-life, demand rapid detection of foodborne pathogens such as Shiga Toxin-producing Escherichia coli (STEC). In this sense, molecular methods can fulfill both requirements of turnaround time and consumer safety. The most popular rapid methods are those based on real-time PCR (qPCR) however, vegetables contain inhibitory compounds that may inhibit the amplification reaction thus, there is a need for novel sample preparation protocols. RESULTS: In the current study, a low-cost sample treatment based on sequential filtration steps was developed. This protocol was combined with covalent organic frameworks (COFs), and compared against a chelating resin, to evaluate their performance by multiplex qPCR targeting the major virulence genes of STEC, namely stx1, stx2, and eae, along with the rfbE for the specific identification of serogroup O157 due to its particularly high incidence, and an Internal Amplification Control to assess reaction inhibition. The optimized sample treatment effectively removed vegetable qPCR inhibitory compounds, and it was possible to detect STEC in spiked ready-to-eat salad samples in one working day, roughly 5 h, with an LOD50 of 8.7 CFU/25 g with high diagnostic sensitivity and specificity. The method was also assessed in samples with cold-stressed bacteria with good results, further demonstrating its applicability. SIGNIFICANCE: It was demonstrated for the first time that COFs are suitable for DNA extraction and purification. In addition to this, due to the tunable nature of these materials, it is envisioned that future modifications in terms of pore size or combination with magnetic materials, will allow to further improve their performance. In addition to this, the rapid and low-cost sample treatment protocol developed demonstrated suitable for the rapid screening of STEC vegetable samples.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Metal-Organic Frameworks , Salads , Shiga-Toxigenic Escherichia coli , Humans , Shiga-Toxigenic Escherichia coli/genetics , Food Microbiology , Real-Time Polymerase Chain Reaction/methods , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Feces/microbiology
10.
Foods ; 13(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38201091

ABSTRACT

Multiplex assays implementing DNA-based methods have been demonstrated as suitable alternatives to culture-based microbiological methods; however, in most cases, they still require a suitable enrichment step. Finding suitable enrichment conditions for different bacteria may result in challenges. In the present study, a novel selective broth named MSB (mTA10 selective broth) was formulated for the simultaneous recovery of Salmonella spp., E. coli O157:H7 and L. monocytogenes. Attention was paid to ensure the optimal enrichment of L. monocytogenes as its enrichment is more challenging. To this end, cellobiose was added to increase the growth of L. monocytogenes, and sodium pyruvate was also added to improve the recovery of stressed bacteria. Four selective agents were added, namely nalidixic acid, sodium cholate, lithium chloride and potassium tellurite, to control the growth of interfering microorganisms. It was concluded that the novel broth was suitable for the simultaneous enrichment of the target pathogens, allowing them to reach concentrations higher than 7 log CFU/mL for each bacterium in pure culture. Furthermore, all heavily contaminated ready-to-eat salad samples reached concentrations higher than 5 log CFU/g. Finally, after 24 h of enrichment of spiked salad, it was possible to detect concentrations below 10 CFU/25 g.

11.
Front Microbiol ; 13: 931810, 2022.
Article in English | MEDLINE | ID: mdl-36033887

ABSTRACT

Microbial pathogens may be present in different types of foods, and hence the development of novel methods to assure consumers' safeness is of great interest. Molecular methods are known to provide sensitive and rapid results; however, they are typically targeted approaches. In recent years, the advent of non-targeted approaches based on next-generation sequencing (NGS) has emerged as a rational way to proceed. This technology allows for the detection of several pathogens simultaneously. Furthermore, with the same set of data, it is possible to characterize the microorganisms in terms of serotype, virulence, and/ or resistance genes, among other molecular features. In the current study, a novel method for the detection of Listeria monocytogenes based on the "quasimetagenomics" approach was developed. Different enrichment media and immunomagnetic separation (IMS) strategies were compared to determine the best approach in terms of L. monocytogenes sequences generated from smoked salmon samples. Finally, the data generated were analyzed with a user-friendly workflow that simultaneously provided the species identification, serotype, and antimicrobial resistance genes. The new method was thoroughly evaluated against a culture-based approach, using smoked salmon inoculated with L. monocytogenes as the matrix of choice. The sequencing method reached a very low limit of detection (LOD50, 1.2 CFU/ 25 g) along with high diagnostic sensitivity and specificity (100%), and a perfect correlation with the culture-based method (Cohen's k = 1.00). Overall, the proposed method overcomes all the major limitations reported for the implementation of NGS as a routine food testing technology and paves the way for future developments taking its advantage into consideration.

12.
Anal Bioanal Chem ; 414(22): 6591-6600, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35915251

ABSTRACT

Infectious diseases caused by Aeromonas salmonicida (A. salmonicida) have a huge impact and produce significant losses in aquaculture and fish farming. Fish pathogen early detection is a critical step for the rapid identification and prevention of these problems. This work presents a novel portable label-free ultrasensitive electrochemical immunosensor for A. salmonicida detection in seawater. It consists of a fluidic integrated electrochemical-cell-chip (ECC) with independent chambers enclosing three electrochemical cells (ECs). Anti-A. salmonicida (AbSalm) antibodies were covalently attached to the gold surface of the microfabricated electrodes and were used for the sensitive detection of A. salmonicida. The antibody-antigen immunoreaction was studied by enzyme-linked immunosorbent assay (ELISA), and the surface functionalization was characterized by using quartz crystal microbalance (QCM), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The performance of the developed immunosensor, in terms of sensitivity, repeatability, and specificity, was also studied. The linear working range varied between 1 and 107 CFU mL-1, with a limit of detection (LOD) as low as 1 CFU mL-1. The suitability of the immunosensor for real sample detection was successfully demonstrated via recovery studies performed in spiked seawater samples. The proposed technology supports the use of low-cost and portable instrumentation that concedes the ultrasensitive, simple, and fast quantification of the A. salmonicida. To the best of our knowledge, this is the first portable sensing system for the detection of A. salmonicida in seawater samples, which provides a promising online monitoring platform for the detection of this bacterium in aquaculture facilities.


Subject(s)
Aeromonas salmonicida , Biosensing Techniques , Animals , Aquaculture , Biosensing Techniques/methods , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Immunoassay/methods , Limit of Detection , Seawater
13.
Compr Rev Food Sci Food Saf ; 21(2): 1913-1939, 2022 03.
Article in English | MEDLINE | ID: mdl-35122372

ABSTRACT

Nucleic acid amplification-based techniques have gained acceptance by the scientific, and general, community as reference methodologies for many different applications. Since the development of the gold standard of these techniques, polymerase chain reaction (PCR), back in the 1980s many improvements have been made, and alternative techniques emerged reporting improvements over PCR. Among these, isothermal amplification approaches resulted of particular interest as could overcome the need of specialized equipment to accurately control temperature changes, but it was after year 2000 that these techniques have flourished in a huge number of novel alternatives with many different degrees of complexities and requirements. An added value is their possibility to be combined with many different naked-eye detection strategies, simplifying the resources needed, allowing to reduce cost, and serving as the basis for novel developments of lab-on-chip systems, and miniaturized devices, for point-of-care testing. In this review, we will go over different types of naked-eye detection strategies, combined with isothermal amplification. This will provide the readers up-to-date information for them to select the most appropriate strategies depending on the particular needs and resources for their experimental setup.


Subject(s)
Nucleic Acid Amplification Techniques , Point-of-Care Testing , Humans , Nucleic Acid Amplification Techniques/methods , Polymerase Chain Reaction
14.
Microorganisms ; 10(1)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35056575

ABSTRACT

Salmonella spp. and antimicrobial resistant microorganisms are two of the most important health issues worldwide. In the present study, strains naturally isolated from mussels harvested in Galicia (one of the main production areas in the world), were genetically characterized attending to the presence of virulence and antimicrobial resistance genes. Additionally, the antimicrobial profile was also determined phenotypically. Strains presenting several virulence genes were isolated but lacked all the antimicrobial resistance genes analyzed. The fact that some of these strains presented multidrug resistance, highlighted the possibility of bearing different genes than those analyzed, or resistance based on completely different mechanisms. The current study highlights the importance of constant surveillance in order to improve the safety of foods.

15.
Anal Chim Acta ; 1184: 339051, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34625270

ABSTRACT

Foodborne pathogens are still a significant source of morbidity and mortality worldwide. In addition to this the current methodologies to track these microorganisms cannot cope with the current intensive production systems, thus novel methods are of outmost importance. DNA-based methods have already demonstrated suitable to address this issue, but most of them are targeted methods such as real-time PCR (qPCR), meaning that one will only find what is looking for, thus taking the risk of missing relevant pathogens in a given sample. To overcome this limitation we have developed an easy-to-implement methodology which enables the detection of several pathogens simultaneously by using long-read Next Generation Sequencing (NGS) with MinION. The method was named "semi-targeted" due to the combination of a non-targeted detection method, NGS, with the usage of selective media in order to partially eliminate non-pathogenic interfering bacteria. To this end, we included an enrichment step for the recovery of different pathogens, namely Salmonella Enteritidis and Typhimurium, Listeria monocytogenes and Escherichia coli O157:H7, after DNA extraction and library preparation, the samples were analyzed with MinION implementing the low-cost Flongle Flow Cells. The methodology was successfully evaluated in spiked milk samples with an excellent agreement with the results obtained by qPCR and culture-based methods. The method can provide accurate results after only 2 h of sequencing. Sample multiplexing, along with the lower cost of the Flongle Flow Cells and the reduced price of the MinION platform, make the assay cost-effective that is of importance for the food industry. Starting the method with a classical microbiological approach, the enrichment, the method is easy to implement in testing laboratories, it provides flexibility in terms of potential pathogens to be detected, and the positive results can be easily confirmed following culture-based, or other type, of confirmation procedures.


Subject(s)
Escherichia coli O157 , Listeria monocytogenes , Escherichia coli O157/genetics , Food Microbiology , Listeria monocytogenes/genetics , Salmonella enteritidis/genetics , Sensitivity and Specificity
17.
Viruses ; 13(5)2021 05 19.
Article in English | MEDLINE | ID: mdl-34069710

ABSTRACT

SARS-CoV-2 is the coronavirus responsible for COVID-19, which has spread worldwide, affecting more than 200 countries, infecting over 140 million people in one year. The gold standard to identify infected people is RT-qPCR, which is highly sensitive, but needs specialized equipment and trained personnel. The demand for these reagents has caused shortages in certain countries. Isothermal nucleic acid techniques, such as loop-mediated isothermal amplification (LAMP) have emerged as an alternative or as a complement to RT-qPCR. In this study, we developed and evaluated a multi-target RT-LAMP for the detection of SARS-CoV-2. The method was evaluated against an RT-qPCR in 152 clinical nasopharyngeal swab samples. The results obtained indicated that both assays presented a "good concordance" (Cohen's k of 0.69), the RT-LAMP was highly specific (99%) but had lower sensitivity compared to the gold standard (63.3%). The calculated low sensitivity was associated with samples with very low viral load (RT-qPCR Cq values higher than 35) which may be associated with non-infectious individuals. If an internal Cq threshold below 35 was set, the sensitivity and Cohen's k increased to 90.9% and 0.92, respectively. The interpretation of the Cohen's k for this was "very good concordance". The RT-LAMP is an attractive approach for frequent individual testing in decentralized setups.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Humans , Molecular Diagnostic Techniques/methods , Nasopharynx/virology , Nucleic Acid Amplification Techniques/methods , RNA, Viral , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Viral Load , Viral Proteins/genetics
18.
Sci Rep ; 11(1): 10175, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986380

ABSTRACT

Zebra mussel (Dreissena polymorpha) is considered as one of the 100 most harmful IAS in the world. Traditional detection methods have limitations, and PCR based environmental DNA detection has provided interesting results for early warning. However, in the last years, the development of isothermal amplification methods has received increasing attention. Among them, loop-mediated isothermal amplification (LAMP) has several advantages, including its higher tolerance to the presence of inhibitors and the possibility of naked-eye detection, which enables and simplifies its potential use in decentralized settings. In the current study, a real-time LAMP (qLAMP) method for the detection of Dreissena polymorpha was developed and tested with samples from the Guadalquivir River basin, together with two real-time PCR (qPCR) methods using different detection chemistries, targeting a specific region of the mitochondrial gene cytochrome C oxidase subunit I. All three developed approaches were evaluated regarding specificity, sensitivity and time required for detection. Regarding sensitivity, both qPCR approaches were more sensitive than qLAMP by one order of magnitude, however the qLAMP method proved to be as specific and much faster being performed in just 9 min versus 23 and 29 min for the qPCR methods based on hydrolysis probe and intercalating dye respectively.


Subject(s)
Dreissena/genetics , Environmental Monitoring/methods , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Animals , DNA Primers , Genes, Mitochondrial/genetics , Introduced Species , Models, Theoretical , Real-Time Polymerase Chain Reaction/methods , Rivers , Spain , Time Factors
19.
Talanta ; 226: 122109, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33676665

ABSTRACT

Purification and concentration of DNA is a critical step on DNA-based analysis, which should ensure efficient DNA isolation and effective removal of contaminants that may interfere with downstream DNA amplification. Complexity of samples, minute content of target analyte, or high DNA fragmentation greatly entangles the success of this step. To overcome this issue, we designed and fabricated a novel miniaturized disposable device for a highly efficient DNA purification. The microfluidic device showed binding efficiency and elution yield of 90.1% and 86.7%, respectively. Moreover, the effect of DNA fragmentation, a parameter that has not been previously addressed, showed a great impact in the recovery step. The microfluidic system integrated micropillars with chitosan being used as the solid-phase for a pH-dependent DNA capture and release. We have showed the potential of the device in the successful purification of environmental DNA (eDNA) from river water samples contaminated with Dreissena polymorpha, an invasive alien species responsible for unquestionable economic and environmental consequences in river water basins. Additionally, the device was also able to concentrate the DNA extract from highly diluted samples, showing promising results for the early detection of such invasive species, which may allow prompt measures for a more efficient control in affected areas. Suitability for integration with downstream DNA analysis was also demonstrated through qPCR analysis of the samples purified with the microfluidic device, allowing detection of the target species even if highly diluted.


Subject(s)
DNA, Environmental , Microfluidic Analytical Techniques , DNA/genetics , Fresh Water , Lab-On-A-Chip Devices , Water
20.
Food Chem (Oxf) ; 3: 100038, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35415648

ABSTRACT

Miniaturization of DNA-based techniques can bring interesting advantages for food analysis, such as portability of complex analytical procedures. In the olive oil industry, miniaturization can be particularly interesting for authenticity and traceability applications, through in situ control of raw materials before production and/or the final products. However, variety identification is challenging, and implementation on miniaturized settings must be carefully evaluated, starting from the selected analytical approach. In this work, SSR- and SNP-based genotyping strategies were investigated for the identification and differentiation of two olive varieties from the Northwest of Spain. For the selected SNPs two genotyping methods were tested: real-time allele-specific PCR and high resolution melting analysis. These methods were compared and evaluated regarding their potential for integration in a microfluidic device. Both SNP-based methods proved to be successful for identification of the selected varieties, however real-time allele-specific PCR was the one that achieved the best results when analyzing mixtures, allowing the identification of both monovarietal samples and mixtures of the varieties tested with up to 25%.

SELECTION OF CITATIONS
SEARCH DETAIL
...