Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 9(1): 4965, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30459307

ABSTRACT

The original version of this Article contained an error in the second sentence of the second paragraph of the 'Electrical properties of fluorinated graphene contacts' section of the Results, which incorrectly read 'The mobility was calculated by the Drude model, µ = ne/σ where µ, n, e, and σ are the carrier mobility, carrier density, electron charge, and sheet conductivity, respectively'. The correct version states 'µ = σ/ne ' in place of 'µ = ne/σ '. This has been corrected in both the PDF and HTML versions of the Article.

2.
Nat Commun ; 9(1): 3988, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30266948

ABSTRACT

Atomically precise fabrication methods are critical for the development of next-generation technologies. For example, in nanoelectronics based on van der Waals heterostructures, where two-dimensional materials are stacked to form devices with nanometer thicknesses, a major challenge is patterning with atomic precision and individually addressing each molecular layer. Here we demonstrate an atomically thin graphene etch stop for patterning van der Waals heterostructures through the selective etch of two-dimensional materials with xenon difluoride gas. Graphene etch stops enable one-step patterning of sophisticated devices from heterostructures by accessing buried layers and forming one-dimensional contacts. Graphene transistors with fluorinated graphene contacts show a room temperature mobility of 40,000 cm2 V-1 s-1 at carrier density of 4 × 1012 cm-2 and contact resistivity of 80 Ω·µm. We demonstrate the versatility of graphene etch stops with three-dimensionally integrated nanoelectronics with multiple active layers and nanoelectromechanical devices with performance comparable to the state-of-the-art.

SELECTION OF CITATIONS
SEARCH DETAIL
...